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ABSTRACT 

We show that every incomplete E ~ enumeration degree is meet-reducible 

in the structure of the enumeration degrees of the E 0 sets. 

1. I n t r o d u c t i o n  

Informally, a set A is enumeration reducible to a set B if there is an effective 

procedure for enumerating A, given any enumeration of B. Following [FR59] and 

[Rog67], this is usually formalized using the notion of an enumeration operator.  

Definit ion 1.1: A mapping ~: 2 ~ ---+ 2 ~ is an e n u m e r a t i o n  o p e r a t o r  (or, 

simply an e - o p e r a t o r ) ,  if there exists a computably enumerable set W such 

that ,  for each set B, 

~b B = {xl (3u)[(x, u I e W & D~, C_ B]}, 
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where D~ denotes the finite set with canonical index u, and ( , ) denotes the 

usual pairing function. 

If the c.e. set Wz defines the e-operator (I) in the sense of the above definition, 

then we let (I) = (I)z. Let {Wz I z e w} be the standard enumeration of the c.e. 

sets: we get a corresponding enumeration {(I)zl z E w~ of the e-operators. If 

(W21 s E w} is a computable enumeration of Wz (in thesense of [Soa87, p. 34]), 

then we get a corresponding c o m p u t a b l e  e n u m e r a t i o n  ( ~ ]  s E w} of the 

e-operator (I)z. We will refer in the following to some fixed computable sequence 

(W~,81 z, s C w) of finite sets, such that, for every z,{W~I s E w} is a computable 

enumeration of W~. 

Given sets A, B, we say that  A is e n u m e r a t i o n  reduc ib le  (or, simply, e- 

reducib le)  to  B (notation: A <~ B), if there exists some e-operator (I) such 

that  A = (~B. 

It is easily seen that  _<~ is a preordering relation. Let _--~ denote the equiva- 

lence relation generated by <~. The -~-equivalence class of a set A (denoted by 

deg~(A)) is called the e n u m e r a t i o n  degree  (or, simply, the e-degree) of A. 

On e-degrees the reducibility ~e originates a partial ordering relation (denoted 

by <). We therefore get a degree structure ( ~ ,  <), where ~ is the collection 

of all e-degrees and < is defined by: [A]~ < [B]e if and only if A _<e B. In fact 

~ is an upper semilattice with least element 0e and binary operation U: the 

least element 0~ is the e-degree of the c.e. sets, and [A]~ U [B]~ -- [A @ B]~, with 

A ~ B = {2x I x C A} U{2x + 11 x e B}. The reader may consult [Coo90] and 
[Sor97] for an extensive survey and bibliography on the e-degrees. 

An important class of e-degrees is constituted by the E ~ e-degrees, i.e. the 

e-degrees of the E ~ sets. It is known, see [Coo84] and [McE85], that  the E ~ e- 

degrees coincide with the structure ~ = ~ ( <  0~), where 0~ = deg~(K), g being 

the complement of the halting set K: in fact, A _<~ K if and only if A E E~ �9 

Although, under several respects, | can be viewed as the e-degree theoretic 

analog of the structure fit of the Turing degrees of the c.e. sets (as suggested 

for instance by Cooper: see the density theorem for 6 ,  [Coo84]; see also [LS92]), 

there are striking elementary differences between the two structures. For in- 

stance, [Ahm91] shows (in contrast with the Lachlan Nondiamond Theorem for 

fit, see [Soa87, p. 162]) that  there exist (in fact, low) e-degrees a, b E | such 

that  a U b = 0~e and a M b = 0~. 

We show in this paper another elementary difference between | and fit, that  

relates to the notion of branching. 
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Detlnition 1.2: Let ~ = (~,  <) be a partial order. We say that  an element 

c E P is b r a n c h i n g  (or m e e t - r e d u c i b l e )  if 

(3a E P)(3b E P)[c < a & c < b & c = a A b]. 

An element c E P is called n o n b r a n c h i n g  if it is not branching. 

[Lac66] proved the existence of incomplete nonbranching elements in fit. Subse- 

quently, [Fej83] proved that  the nonbranching elements of fit are dense. 

[Sla91] proved the density of the branching elements of fit. 

We prove here a rather surprising result for | All elements a E | with 

a < 0~, are branching in | 

THEOREM 1.3: For every incomplete E ~ enumeration degree c there exist enu- 

meration degrees a, b < 0" such that: 

(1) a U c  s c, b U c  2~c, 

(2) c = ( a U c ) M ( b U c ) .  

In the following, suppose that  L is a E ~ set such that  L <~ K ,  and suppose we 

are given some E ~ approximation {LS[ s E w} to L, i.e. a computable sequence 

of finite sets such that  

L = {x I (3t)(Vs >_ t)[x E LS]}. 

For more on E~ see [LS92]. Finally, let 

~ 8  = {x  < s I x r K s } 

(where {KSI s e w} is a computable approximation to the halting set K).  

2. T h e  r e q u i r e m e n t s  

Given L <~ K ,  we will construct E ~ sets A, B by stages. At stage s of the 

construction, given any expression ,4, we will often write ,4Is] to denote the 

evaluation of the expression at stage s: see [Soa87, p. 315] for this notation. 

If, at  stage s, we define the current value of a set X[s], we will write x ~ X[s] 
to mean that  we enumerate x (or x gets enumerated) into X[s] (hence x E X[s]) 

and x / ~  X[s] to mean that  we extract x (or x gets extracted) from X[s] (hence 

x ~ X[s]). If  E is a finite set, we use similar notations: E "~ X[s] (i.e. x "~ X[s], 
all x E E)  and E / ~  X[s] (i.e. x / ~  X[s], all x E E). 
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Let {(~5i, ~i)}ie~o be an effective listing of all pairs of e-operators. 

In order to prove Theorem 1.3, we want to construct E2 ~ sets A, B satisfying 

the following requirements, for every i, k E w: 

: Z i  = = q, eL = 
X A :  A = q ~ L ~  A n 

~- A,k '  
B:ef   zx L : B ,k '  

where Fi, AA,k, AB, k are e-operators to be constructed. 

We say that  a requirement Tr is a :P-requirement if, for some i, 7~ = T'i; 

in a similar way, we talk about A/-requirements, XA-requirements and AT s-  

requirements. 

We order the requirements according to the following linear ordering (called 

the p r i o r i t y  ordering of the requirements): 

with i E w. 

3. T h e  s t r a t e g i e s  

We outline the strategies used, in isolation, to meet the requirements. 

3.1 T H E  ATOMIC MODULES, 

3.1.1 The requirement "Pi- For simplicity, let us drop the subscript i; let Z = 
~ A ~ L  N tI~ B $ L .  

If x E Z - r L, then choose finite sets a, h A, fl, A B such that 

and 
a@AAc_A@L ~@ABC_B@L, 

and enumerate an axiom (x, ,k) E F, with )~ _D )~A U )~B. 

3.1.2 The requirement Af A. For simplicity let us drop the indices A, k. 

If all numbers y < x have been chosen, and no such y is currently at 2(a), or 

3(i) of the basic module below, then choose x; pick up a new number c~: 

1. if K( x )  = AL(x), then do nothing; 

2. if x E K - A L ,  then define cx E A: 
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(a) wait for c~ "~ (I)L; 

(b) choose an axiom (cx, h) E 4) such that h C_ L and enumerate the 

axiom (x, h) E A; 

(c) return to 1.; 

3. if x E A L - K then extract c~ from A; 

(i) wait for cx f f  (I)L; 

(ii) return to 1. 

The numbers c~ will be called cod ing  marke r s .  

3.1.3 The requirement Af t .  The module in this case is of course similar to the 

module for Af A, but replacing A with B and AA,k with AB,k. We skip the 

obvious details. 

3.2 ANALYSIS OF OUTCOMES. We briefly discuss the possible outcomes of the 

above strategies. 

3.2.1 The requirement Pi. For simplicity, let us drop the subscript i. 

The  strategy here aims at defining suitable axioms (x, h) E F, for x E Z. Note 

that  if, eventually, a C_ A and ~ C_ B (i.e. the extracting activity of the Af- 

requirements does not interfere with P,  see Section 3.3), then x f f  Z =~ z f f  F L 

by automatic F-rectification: indeed, if a _c A and fl C B and x ~ Z, then 

h A U h B ~ L, hence h ~ L (where A A, h B are as in 3.1.1 and h ~ h A U hB). 

3.2.2 The requirement X A. For simplicity, let us drop the indices A and k. 

The finitary outcome 2(a) corresponds to c~ E A - on;  infinitely many loops 

through 2(c), in relation to some x, correspond to the case c~ E A - ~ L  The 

finitary outcome 30) corresponds to c~ E r _ A. Infinitely many loops through 

3(ii) imply x ~ A L. If no x gets stuck at 2(a) or 3(i), and yields infinitely many 

loops through 2(c), then we get K = A L (contradicting that L <e K)- Since 

L <~ K,  there must exist some number x such that the only allowed outcomes 

are therefore the finitary outcomes 2(a), 3(i) or the infinitary outcome 2(c). 

3.2.3 The requirement X s .  See the discussion relative to the outcomes of Aft ,  

but replacing A with B and AA,k with AB,k. 

3.3 INTERACTIONS BETWEEN REQUIREMENTS. The extracting activity of the 

H-requirements  conflicts with the activity of the P-requirements, consisting in 

defining F-axioms. We explain below the nature of these conflicts and how to 

combine the different strategies. 
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3.3.1 A 7~-requirement below an H-requirement. We consider only the case of 

an N-requirement  of the form Af A, above some T~: the case of a requirement of 

the form JV'ff is similar. 

For simplicity, let us omit the subscripts k and i, and the superscript A. 

A somewhat problematic case is when we go through 3. of the basic module of 

Af on behalf of infinitely many numbers x, ending up with a (possibly) infinite 

set V (consisting of numbers c~ corresponding to numbers x such that  x ~ K)  

being extracted from A. How does P,  acting after Af, account for this infinitary 

extracting activity? 

We measure the length of agreement between K and A L by a length of 

agreement function s such that  K = A L ~=~ lims~(k,s) = +oo: thus 

= lim inf8/(k, s) exists and is finite. 

We will guarantee that  
A = (I)L ==~ g -~ A L, 

so that ,  eventually, A • (I) L. 

The number s will be of the form g = (x,u), with K(x)  r AL(x). We can 

therefore distinguish two outcomes: a finitary one (x �9 A L - K ) ,  and an infinitary 

one (x �9 K - AL; this latter outcome may be infinitary since there might exist 

infinitely many stages s such that,  at stage s, x �9 An). The problem here is 

that  while working below outcome g, P cannot foresee which numbers y, that  

are currently in K ,  will be later removed from K,  forcing the strategy to extract 

the corresponding number cy from A. We go around this problem by extracting 

all current cv's, corresponding to actions undertaken to the right of the current 

path (i.e. with y > g), pending our decision to enumerate again in A a new c u 

at the next stage s at which y ~_ s s) and y �9 K8 (so that  eventually, for some 

cu, we have that  c v �9 A i f y  �9 K and lims = +co). 

We hence arrange things so that the extracting activity of A f results in extract- 

ing a (possibly infinite) computable set V from A, by simply amending the basic 

module with the addition of the following clause: 

if y > ~, then extract also cu from A. 

The T'-activity (consisting in enumerating F-axioms) can easily deal with these 

extractions fr(;m its position on the tree of outcomes. 

3.3.2 An N-requirement below a P-requirement. We consider only the case of 

an N-requirement  of the form A fA below some P~, the case of Afff being similar, 

and we omit obvious subscripts and superscripts. 
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It is clear from the discussion in the previous subsection that  the extracting 

activity of 24" interferes with the strategy of T ) in that  Af-extractions may result 

in forcing numbers z to leave (~AoL; thus Z /~ Z, and this implies that  we need 

Z /'~ F L, if we hope to maintain the equation Z ---- I ~L. 

We need therefore to consider what happens when, for some z, at some stage, 

z E Z = ~A(~LN~B(~L ,  and we consequently enumerate an axiom (z, ~) E F, with 

A C_ L, in order to have z E 1 ~L, and subsequent extracting activity demanded by 

Af will force z to leave if2 A~L and thus, Z, so that we need to extract z from 1 -'L. 

Enumerating F-axioms at sufficiently large stages. We deal with the difficulties 

entailed by the II ~ hypothesis (~A~L : ~B(gL of ~O, by dispersing down through 

the tree of outcomes our at tempts at diagonalizing against ~A(gL ~_ ~BOL as 
well as the enumeration of the F-axioms. Therefore for almost all x, axioms of 

the form (x,)~) E F wilt be enumerated only after acting at Af. Thus, for almost 

all x, we enumerate axioms (x, A) E F only at stages s such that t(k, s) > s 

where s = (x, u) -- lim infs s s). Clearly, enumeration of a F-axiom below s if 

s is the finitary outcome at Af, does not present any problem. On the other hand, 

enumeration of F-axioms below or to the right of the infinitary outcome at Af 

(that is, x E K -  A L) can also be easily dealt with for the following reason: if we 

work at stages s such that s s) > (x, u), then we are assuming that  x E An[s], 
thus we enumerate axioms (z, ~) E F, with A containing the AL-use of x (i.e. 

x E A n and A C L at stage s). Since x r A n, it follows that A ~ L, thus none of 

-these axioms applies to get z E F L. 

We may therefore conclude that there are only finitely many numbers x such 

that  (letting V be the possibly infinite set eventually extracted by Af) we have 

that  x /~ Z, due to V /~ A, but x E r L. These numbers are included among 

those numbers x for which we enumerate axioms (x, A) E F before acting at Af. 

We deal with these finitely many numbers x by looking for opportunities of 

diagonalization, thus getting r ~ ~B~L(x),  as follows: if x ~ ~A$L, due 

to the extracting activity of A/', then we restrain some finite/3 C B such that  

x E ~f~$L. If, following this action, no L-change occurs yielding x / 7  ~ZSL (and 

thus x / ~  FL), then we win the requirement :P, since we get x E ~B$L _ (~ASL.  

otherwise we get x /~ F L, thus restoring the equation Z(x) = I~i(x): in this 

latter case we drop any previous restraint. 

Here is a more schematic description of the above strategy. 

If x E F L and x / '~  Z (due to fir) and x ~ ~AOL, then pick finite sets j3 and ,~ 

such that  
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(i) x E k ~ $ ~ ,  (x, A) C F and A C L: enumerate 3 in B, and restrain/3 C_ B; 

(ii) wait for x ,/~ kI/j3@L (thus it is not the case that x E F L, via the axiom 

(x, A) C F, due to some L-change relative to some element of A); 

(iii) drop any restraint. 

Infinitely many loops through (ii) yield x r FL; otherwise x C ~ B $ L  _ ~ A ~ L .  

This restraining activity (taken care of by A / a n d  located at the appropriate 

(N, I?) of the tree of outcomes) does not prevent lower priority requirements from 

being satisfied, since it is finitary, referring only to finitely many numbers x. 

A more detailed discussion of how to combine the strategies will be in reference 

to the tree of outcomes, described in next section. 

4. T h e  t r e e  of  o u t c o m e s  

In this section we define the tree of outcomes T, which is going to be a subset 

of w (~. Let R be the set of M1 requirements, and let P and N denote the sets of 

P-requirements and N-requirements, respectively. The set N is partitioned into 
N A and N B, i.e. the sets of A/A_ and A/B-requirements, respectively. Together 

with the tree of outcomes, we will define also the r e q u i r e m e n t  a s s ignmen t  
function, i.e. a function 7~ : T ~ II~ U (N • P) U (P • w). 

The elements of T will be called s t r ings  or nodes.  We will distinguish the 
F-nodes,  the N-nodes (partitioned into the N A- and the NB-nodes), the (N, F)- 

nodes  (again, partitioned into the (N A, P)-nodes and (N B, P)-nodes), and the 

F-nodes.  If a is a F-node, then T~(a) is a P-requirement; if a is an N-node, 

then T~(cr) is an N-requirement; if a is an (N, F)-node, then 7~(a) C N x •, 

i.e. 7~(cr) = (A/, P),  where A/ i s  an X-requirement and P is a P-requirement; 

finally, if a is a F-node, then 7~(a) = (P,x),  where P is a P-requirement and 

x E w. Along any infinite path of T, the assignment of requirements to nodes is 
according to the priority listing of the requirements. The meaning of the F-nodes 

and of the (Af, P)-nodes will be explained in Subsection 4.2. 

Before giving the formM details, we give some intuition underlying the defini- 

tions of T and R. With the exception of the F-nodes, having only one outcome, 

each node has countably many outcomes (with order type w). Along any infinite 

branch f of the tree, each F-node is followed by a F-node; each F-node is followed 

by an NA-node; if a C f is an NA-node, and 7~(a) = JV "A, then a is immediately 

followed by k + 1 (N, F)-nodes To,. . . ,  Tk, where Tt(Ti) = (A/A,  Pi ) ,  with Pi the 

i-th P-requirement in order of priority; the last such (N, F)-node is followed by 
an NB-node; as for the NA-nodes, if a c f is an NS-node and 7~(a) = A/k B, 
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then  o is immedia te ly  followed by k + 1 (N, ]?)-nodes; the last  such (N, ]?)-node 

is followed by an F-node; finally, if c~ C f is a P-node, then for every x r w there  

exists exac t ly  one F-node ~- such tha t  a C ~" C f and Tr = (Tr x), and for 

no T' C a can we have Tr = (Tr y), for any y. 

De~nition 4.1: T and Tr are defined by induction as follows (we assume tha t  

]? • w is ordered as follows: let (P i , x )  < (7)i,,x ') if and only if ( i ,x)  < (i ' ,x '};  

when referred to requirements ,  the t e rm "least" below, unless otherwise specified, 

always refers to the priori ty ordering of the requirements) :  

1. (~ E T; 0 is a P-node; TO(0) = P0; 

2. if o E T and 0 is a P-node, then 0^0 E T; 060 is a F-node; finally, 

~ ( aA0)  = least{(/) ,  x) E P • w[ (VT C 0) 

[n(~) # (p, z)] ~ (3~ c_ o)[n(~) = 7)]}; 

3. if o E T and ~ is a F-node,  then, for every n, a ~ n  E T and oAn is an 

N-node; let 

n ( ~ A n )  = l e a s t { N  �9 N] (W c o ) [ n ( ~ )  ~ ~ } ;  

4. if o �9 T and 0 is an NA-node, then, for every n E w, o ^ n  E T; a ^ n  is an 

(1~ A , ]?)-node; Tr = (Tr 7)0). 

Finally, let o(a-n )  = 0 (see Remark  4.2 below); 

5. if o �9 T and c~ is an NS-node,  then, for every n �9 w, a ^ n  E T; a ^ n  is an 

(N" ,  P)-node; Tr = (7~(0), 7)0). 

Finally, let o(a-n )  = 0; 

6. if a �9 T and 0 is an (N A, ]?)-node, and, say, ~ ( 0 )  = (Af A, J )) with 7) _< 
Af A, and 

{ n e P I  7) < n_< :r A} ~ ,  

then  let a ^ n  �9 T, for every n �9 w; the nodes a ^ n  are (N A, ]?)-nodes; we 

define Tr to be (AfA,7)t), where 7 )'  is the least requirement  7r E ]? 

such tha t  P < 7r < AfA. 

Let  o(a~n) = o(a) ,  for every n E ~; 

7. if 0 E T and a is an (N A, P)-node, and, say, TO(a) = (.h/A, 7)) wi th  7) < 
AfA, and 

{ n  �9 ]?l P < n < ~fA} = O, 
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then let a^n C T, for every n C w; the nodes a^n are NB-nodes; we define 

~(aAn) to be the least AfB-requirement ~ with 7~ > j•A; 

8. if a �9 T and a is an (N B, P)-node, and, say, 7~(a) = (j~s, 7~) with P < 

Af B, and 

{n �9 ~1 ~' < n < N  B} r r 

then let a^n �9 T, for every n �9 w; the nodes a^n are (N s ,  P)-nodes; we 

define ~(a^n)  to be (Af ~, P~), where :P~ is the least requirement 7~ �9 F 

such that  P < T~ < Af B. 

Let o(a^n) -- o(a), for every n �9 w; 

9. if a �9 T and a is an (NB,p)-node, and, say, T~(a) = (J~B,7~) with T' < 
Af t3, and 

then let a^n �9 T, for every n �9 w; the nodes aAn are P-nodes; we define 

T~(a^n) to be the least 7~-requirement P > J ~ .  

We will sometimes write a �9 T N, a �9 T ~ ,  a �9 T ~ , i f a  is an N-, N A-, or an 

NB-node, respectively. 

Remark 4.2: We notice: 

1. if a is an (N, P)-node, then o(a) denotes the largest N-node ~- C a; 

2. if 7~(a) = 7~i, we will sometimes happen to write 

Z,,  = --,,'~A+L = --,,~B+L ~ Z~, = r ~  

instead of 

z ,  = = Z ,  = 

(and similarly Z~ for Z~, ~ for ~i, etc.). 

Similarly we may write 

A = + ~ R  AL 
= A~ot 

instead of 
A = ~ L ~ R  A L = A,a 

(and similarly r for Ck, etc.), if 7~(a) is an Aft-requirement;  we use 

similar notations for NB-nodes. 
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Definition 4.3: Let (~a] a E T}  be a computab le  par t i t ion  of w into infinite 

compu tab l e  sets. The  elements  of ~ may  be chosen to be  appoin ted  as a - c o d i n g  

m a r k e r s .  

4.1 NOTATION AND TERMINOLOGY FOR STRINGS. We use s t andard  terminol-  

ogy and nota t ions  for strings. In par t icular ,  given any a E T,  let ]a I denote  the  

length of a .  

Given a, 7 E T,  let a -~ ~- if and only if ei ther a C_ T, or y(a,T) $ and 
a(y(a, ~-)) ~ ~-(y(a, T)), where y(a, T) is the least number ,  if defined, such t ha t  

y < ]a],l T ] and a(y) r T(y)]. We say t ha t  a is t o  t h e  l e f t  o f t  (notat ion:  

a ~L  T) ,  if a ~ T, but  a q: T. Given a str ing a and a number  y, the  symbol  

a [ y denotes  the  initial segment  of a having length y. If  In] > 0, then  let 

a -  = a  f l a l -  1. 
I f  a E T,  and n E w is such t ha t  a^n E T, then  we say t ha t  n is an o u t c o m e  

a t  a .  Finally, if T C_ a and T = T--^X, then we say t ha t  x is the  o u t c o m e  a t  ~-- 

a l o n g  a.  

4.2 ANALYSIS OF TREE OUTCOMES. 

We give now intui t ion for the construct ion,  which is formally explained in the  

next  section. 

1. If  a is a P-node (say ~ ( a )  -- Pi) ,  then  we observe tha t  we have no dist inct  

ou tcomes  a t  a .  We jus t  regard a as the  node at  which we s ta r t  our  s t r a t egy  

for the  corresponding P- requi rement ,  by rout inely upda t ing  the  opera to r  

Fa.  T h e  eventual  success of the  s t ra tegy  will need the coopera t ion  of the  

lower pr ior i ty  N- requ i rement s .  The  upda t ing  s t ra tegy  will be  dispersed 

th rough  the infinitely m a n y  F-nodes  ~- _D a wi th  7~(T) ---- (P~, x), for some 

X. 

2. Let  a be  a F-node  (say ~ ( a )  -- (P i ,x ) ) .  The  F-node  a is devoted to  

defining sui table  axioms (x, A) E F . ,  where ~r C a is such t ha t  T~(~r) = Pi .  

I f  x E (I)ASL M ~LI/B~L - -  F L at  s tage s, then  we sui tably  choose finite sets 

(~, f~, A A, A s such tha t ,  a t  s tage s, 

x E (I)~ ~xA M qjZ$~B - - i  

and ~ ( g A  A C_ A ( g L ,  a n d r e a  B C_ B @ L .  We enumera t e  an ax iom 

(x, A) E F~, where A C L 8 and A _D A A U A B, and A is large enough to 

contain  all finite sets A(p, s) such t ha t  p C_ a and A(p, s) C L 8. We now 

briefly explain  wha t  the  sets A(p, s) are, for p C_ a .  
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�9 If  ~ is a F-node,  and n is the outcome at v along a,  i.e. p = ~^n C_ a,  

then  we let 

A(p,s) = U{A] A �9 Ok} 

where Dk (the finite set with canonical index k), also denoted by 

D(~, s) in the construct ion,  is the current  guess, at  s tage s, at  the 

eventual ly  finite collection of finite sets A's such tha t  (x, A) �9 F~ and 

AC_L. 

�9 If ~ C a is an N-node, and g is the outcome at  v along a,  i.e. p = 

~^g C_ a ,  then  we single out a suitable set of numbers  x such t ha t  

x �9 A L at  s tage s, and, for each such x, we will denote  by A(v, x, s) a 

su i tably  chosen finite set such tha t  A(v, x, 8) C_ L s and x �9 A~("x'~): 

if C(p, s) the set of all such numbers  x, then finally we let 

= U 
x~C(p,s) 

�9 Similarly, if ~ is an (N, P)-node (where, say, 7r ~ C a is the correspond-  

ing P-node, i.e. "~(v) = (Af ' ,~(~r ' ) ) ,  for some Af') such tha t  v C a ,  

n is the outcome at  ~ along a,  i.e. p = v^n  C a,  then  we will denote  

by A(p, s) the finite set 

8) = U A(., y, s) 
yEDh 

where Dh (also denoted by E ( v , s )  in the construct ion) is the cur- 

rent  guess at  the (eventually finite) set of elements  leaving Z~, as a 

consequence of the ext rac t ing act ivi ty of 7~(o(v)), but  D,~ C_ F L, a t  

s tage s; by A(v, y, s) we mean  some sui tably chosen finite set such 

P~(~'Y'8) and A(v, y, s) C_ L ~. t ha t  y E ~ ,  

Notice tha t ,  in all cases, )~(p, s) C_ L 8. 

R e m a r k  4.4: Notice tha t  any L-change at  some later  s tage t, relative to 

any  of these sets A(p, s) (i.e. A(p, s) ~ Lt),  will entail  A ~ L t, for the A 

used in the  new F~ axiom. This  is a crucial point  for the success of T~ :  

if ~r is on the t rue  pa th ,  then  the construct ion guarantees  t ha t  all axioms 

(x, A) c F~r defined while act ing at  a stage s a t  some str ing to the  right 

of the  t rue  p a t h  are such t ha t  A will contain some set A(p, s) such t ha t  

A(p, s) ~ L, so these axioms do not apply  to get x E F L. 
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If n is the  ou tcome of cr at  s, at  a^n, for each A E D~ we res t ra in  finite 

sets a(a, A, s) C_ A and fl(a, A, s) C_ B such tha t  

x C @~(~,;~,~)e~ rl ~Z(~,~,~)e~ 

. 

(let a ( a , A , s )  = 0 and fl(cr, A,s) = 0 if no such finite sets exist) by 

res t ra in ing  the  finite sets 

a(a^n,s)= U a(a,A,s), fl(a^n,s)= U fl(a,A,s) 
)~ED~ AED,~ 

in A and B, respectively. Following this restraining action, if A C_ L for 

some A c Dn,  then  the only H- r equ i r emen t s  tha t  are allowed to force 

x / ~  Zi are those of higher priori ty than  ~ .  

Notice tha t  we drop any rest ra int  when we move along crY0: the  tree 

ou tcome  0 corresponds  to the case x r F~. 

Let  a be  an ]~knode. Assume for simplicity tha t  a is an NA-node, the  case 

of an NB-node  being similar. We define a length of agreement  funct ion 

f (a ,  s), and we show (with a on the t rue  path) ,  

lira g(cr, s) = +oo =~ K = A L. 

On the  o ther  hand,  the  construct ion guarantees  tha t  

A = ~L ~ ~ = AL. 

I t  then  follows tha t  lim infs/?(a, s) = ~ is finite, and thus A ~ r  We give 

ou tcome  t?(a, s) at  a at  s. 

T h e  ou tcome  g(a, s) will be of the form g = (x, u}: we a im at  get t ing ei ther  

x E K -  A L (and in this case, for every s > u, x E K~),  or x G A L - 

(and in this case, for every s >_ u, x C A L at  s tage s). 

Each coding marker  c (see Definition 4.3) will be chosen f rom ~ :  the  

coding marker  of  z, when chosen a t  some stage s, will be  denoted by 

If  ~ = (x, u) is the  ou tcome at  a a t  s tage s, then  we ex t rac t  f rom A ~ 

a finite set V(a, s), consist ing (modulo higher priori ty constraints)  of all 

previously  appo in ted  coding markers  cu, corresponding to the  numbers  y 

such tha t  y > 2, or y _< g and y ~t K~.  
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4. 

We refer the reader to Subsection 3.3.1 for a discussion relative to this 

extracting activity. Notice however that,  in accordance with Subsection 

3.3.1, if g --- liminfs g(a, s) then we do not have K(g) r Ai(g),  but  rather 

K(x )  r AL(x), where g ---- (x, u), for some u. 

Let a be an (N, lP)-node. Assume for simplicity that  a is an (N A , P)-node, 

the case of an (N B , P)-node being similar. 

Let n(a)  -- (A fA, ~oi), and let ~r c_ ~ be such that  TC(Tr) = / ) i .  At this node 

a we monitor the effects on TO(r) of the extracting activity done on behalf 

of TC(o(a)), with Af A of lower priority than 7~i (recall that TC(o(a)) = 
AfA: let us write y instead of o(a)). Suppose that at stage 8 we need to  

extract  V(v, s) from A, as demanded by the strategy for 7r (let us write 

V -- V(v, 8)). Let us use the symbol E to denote the finite set E(a, 8) of 

numbers such that,  at step s: 

U /~ A =~ E / ~  Z~&E C_ F L 

(where, of course, for any x E E, axioms of the form (x,)~) E F~ have been 

previously defined). 

We give outcome h -= h(a, 8) at a at 8, where h is the canonical index of 

E.  If E ~ 0, then we restrain at a^h some finite set F C_ B such that  

E C IX/FeL. We use the symbol ~(a^h, s) ((~(a^h, s), respectively, if a is 

an (Ns,p)-node)  to denote such a finite set F: in fact, for every x E E, 

we suitably choose finite sets ~(a, x, 8) (respectively, a(a ,  x, 8) if a is an 

(Ns,P)-node)  and ~(a,x,s) such that  x E ~t~( . . . .  s)e~( . . . .  s), ~(a,x, 8) 
)~(a, x, s) C_ BeL[s] and (x,)~(a, x, s)) E F~, and we restrain ~(a, x, s) C_ B 

((~(a, x, s) C_ A, respectively, if a is an (N B, P)-node), by restraining the 

finite set 

= [.J 
x~E(a,s) 

in B (respectively, a(a^h, s) = UxeE(a,s) o~(a, x, 8) in A, if a is an (N B , P)- 

node). 

If a is on the true path, we will show that h = lim infs h(a, s) exists. There 

are two possibilities: 

�9 If we get outcome 0 at (r infinitely often, then there is no damage 

caused to TO(r) by the extracting activity done on behalf of TO(v), 

since, for all possible x such that  x / ~  Zi due to ~(v)-extractions,  

we get x / '~  F L due to infinitely many corresponding L-changes. 
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Otherwise Dh 7s O. Then, either for some x E Dh our restraining 

activity at a^h gives x E f fgB~L _ ~ A ( b L .  this yields an outright win 

of "]-~(71"); o r  x E (I)A~L n ~SeL,  for all x E Dh, showing that  the 

~(~)-extractions do not interfere with the equation Zi -- F L 7 r "  

Thus the outcome D h ~ ~ entails a successful diagonalization against 

the hypothesis ffpA~L _~ ffgB~L of the P-requirement corresponding - - T r  - - 7 ~  

to the (N,P)-node a. 

5. T h e  c o n s t r u c t i o n  

The construction is by stages and aims to define suitable recursive sequences of 

finite sets {AS[ s E w} and {BS[ s E w}, such that the Z ~ sets 

A = { x  l (3 t ) (Vs_>t) [xEA~]} and B = { x [ ( 3 t ) ( V s _ > t ) [ x E B ~ ] }  

satisfy the requirements of Section 2. 

At stage s 'we define a string 5s E T (with ]5~ I = s), together with the values 

of several parameters. The intuitive meaning of all relevant parameters has been 

already explained in the previous section. 

For every a E T and stage s, let 

S m a x { t < s ] a C S ~ }  if any, t(er, 3) [ s otherwise. 

Definition 5.1: Throughout  the following, given any e-operator �9 and any E ~ set 

X with a E~ {XS}~E~, by {(bx~}sc~ we mean the 

E~ to (I)x defined in [MC85, Proposition 5]. While acting at 

a at stage s (i.e. a C 5s), given any E ~ set X with a given E~ 

{XS}se~, we will write (for v such that  t(a,s) < v < s): x E X[v], if 

(Vu)[t(~, s) < ~ < v ~ ~ r x %  

Definition 5.2: Let P(y, s) be any relation. If P(y, s) holds, then let 

ty(s) = least {t l  P(Y, t )& (Vu)[t < u < s ~ P(y,  u)] }. 

We say that  we o p t i m a l l y  choose  y for  P at stage s if y is the least number 

among those with minimal ty(s) (in fact, y can be (the code of) a finite set or a 

pair of finite sets, etc.). 

At step s, any parameter p retains the same value as at the preceding stage, 

unless otherwise specified by the construction. Any parameter p is by default 
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undefined (i.e. p = $  if p ranges through the numbers ,  and p = 0, if p ranges 

th rough  the finite sets). 

The  e-opera tors  P~, AA,~, AB,~ will be defined through computab le  approx-  

imat ions  (modulo  identification of each e-operator  with the corresponding c.e. 

set): at  s tage s we define P~, A~, A~. 

5.1 STEP 0. Let  5o = 0. For every a �9 T let 

V(a ,  0) = E ( ~  = a ( a ,  0) = ~(a ,  0) = A(a, 0) = AA(a, 0) = AB(~ = O. 

For every a �9 T and z �9 co, let 

0) = z,  0) = z, 0) = O; 

let c(a, z, 0) =$,  g(a, 0) = h(a, O) =~, pO = Ao a = O. 

Finally, let A ~ = 0 and B ~ = ~. 

5.2 STEP 8§  Assume tha t  we have already defined 58+1 In  (with 58+1 [0 = 0). 

If  n + 1 _< s + 1 then  we proceed and define a + = 5~+1 In  + 1 according to which 

of the following cases applies. Otherwise we go to step s + 2. 

Before dist inguishing the various cases, we first give the following definition: 

Definition 5.3: If .4 = A(A, B,  L) is any expression involving A, B or L, we 

wri te  A[a,  s + 1] to denote  A(A[a,  s + 1], B[a, s + 1], L[s + 1]), where 

A[a, s + 1] = (A[s] U U , c ~  a(v,  s 

B[a, s + 11 = (B[s] U Urc~/3(% s 

5.2.1 a is a P-node. Let a + = a~0. Go 

5.2.2 a is a F-node.  Assume tha t  7~(0) 

+ 1)) - U~c_~,.eT~ V(r ,  s § 1), 

+ 1)) - U.c_~,.eTm V(T, s § 1). 

and define 58+1 In  + 2, if n + 2 _< s + 1. 

= (Pi ,x ) ,  where 

wi th  7r C_ a such tha t  7~(7r) = Pi.  In the following, drop the subscr ipt  i and write 

P = P~. 

1. If  x �9 cA~L[o , s  -4- 1] n qABSL[a,S § 1] -- FL[a,S 4- 1], then  opt imal ly  

choose finite sets a, /3,  A A, A s ,  according to Definition 5.2, where we take 

as P ( ( a ,  13, A A, AB}, s + 1) the relation tha t  holds if and only if 

(z, a �9 A A) �9 r 
B) �9 

and 
a ~  A A C (A @ L)[a,s  + 1], 

t3 @ A B C_ (B @ L)[a, ~ + 1]. 
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Enumerate (x, A) �9 F s+l, where 

,x = :,~ u ~ '  u U { ~ ( p ,  s + 1)1 p c ~ }  

2. We now define the outcome at a. For this we need to introduce an auxiliary 

set G(a, s + 1) linearly ordered by the (strict) order <s~+l (assume that  

G(7, 0) = < ~ =  0, for all T). 

We first update G(a, s). If there exists a finite set A �9 G(a, s) such that 

A ~Z L[s + 1], then let ~ be the <i-least  such set and let 

D ( a , s +  1) = {A �9 G(a,s)l A <~ ~}; 

if no such A exists, then let D(a, s + 1) -- G(a, s). 

Let now 

G(a,s+l)=D(a,s+l)U{h I(y,A)�9 s&Acn[s+l]}. 

Given any ~ �9 G(a,s  + 1), let 

d ( c ~ , A , s + l ) = m i n { t _ < s + l  I ( V u ) [ t < u < s + l ~ A C L [ u ] ] } .  

Finally, for every A, .V �9 G(a, s + 1), let .k <~+1 A~ if and only if 

d(a, A, s + 1) < d(a, ~', s + 1) or [d(a, A, s + 1) = d(a, A',s + 1) &: A < A'] 

(where we say that  A < A' if the canonical index of A is smaller than the 

canonical index of A'). Let k(a, s +  1) be the canonical index of D(a, s+  1). 
Define 

~+ = aAk(a, s + 1). 

Having defined the outcome, next we look for finite sets (~,/3 to be 
restrained in A,B ,  respectively, in order to make sure that  x �9 
r ("l ff~B~L, whenever possible. 

For every A �9 D(a, s + 1), if there exist finite subsets c~,/~ such that  

x �9 ~"e~[s + 1] n ,~e; ' [s  + 1] 

and 

aaU{v(u,s+ 1)l v C_ a & u  E T ~ }  = 0, 

9 n U { v ( ~ , s  + 1)1.  c_ ~ & .  �9 T ~ } = 0, 
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then  opt imal ly  choose some such finite sets a(a, A, s + 1), j3(a, A, s + 1). 

If no such finite sets exist, then let a(a, A, s + 1) = j3(a, A, s + 1) = 0. Let  

+ l) -- (.J + 1) and 
A6D(a,s+I) 

~(cr+ 's  + 1 ) =  U /3(a,A,s + 1); 
A6 D(cr,s+ l ) 

we will enumera te  the elements of a ( a  +, s + 1) in A s+l and the elements 

o f /3 (a  +, s + 1) into B s+l. 

I n i t i a l i z a t i o n .  If a(a  +, s + 1) # a ( a  +, s) or otherwise j3(a +, s + 1) # t3(a +, s), 

then i n i t i a l i z e  all T such tha t  a + _ z, by lett ing 

�9 PSr +1 : @ and A s+l : @; 

�9 C(T, Z, S + 1) =j' ,  all z.  

In this case move directly to stage s + 2. 

Otherwise,  go and define 5s+1 In + 2, if n + 2 < s + 1. 

5.2.3 a is an NA-node. Assume tha t  T/(a) = H A, where 

A/A: A = o L = > ~ = A  L. 

For simplicity, we will omit the subscripts k and a,  thus writing (I, for ~l'k, and 

A for A~. 

In order  to  measure the length of agreement between K and A L, we now 

int roduce the  following length of agreement function. 

Definition 5.4: Let  

e(a,s + 1) =least{<x,t)I  x < s&  

It = 0 & x  �9 R s+l r hL[s + 1]IV 

(Vu)[t < u < s + 1 ~ Ix 6 AL[u] & x  r K '+ : ] ]} .  

If no such <x, t> exists, then let g(a, s + 1) = s + 1. 

Remark  5.5: We notice tha t  if {s I a C_ as} is infinite and there  exist infinitely 

many  stages s + 1 such tha t  g(a, s + 1) = (ac, t>, then  ei ther x 6 K - A L or 

x �9 A L - K .  Indeed, it is clear tha t  either x �9 K or x E A i .  If for instance 

x �9 K ,  then,  under  the assumptions,  we have tha t  there  exist infinitely many  

stages v such tha t  x ~ A/[v] :  a similar argument  works if x �9 A i .  

Let  a + = a^~(a, s + 1). 
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Definition 5.6: We say tha t  s + 1 is a - e x p a n s i o n a r y  if 

x ~ ~ + l  ~ c(o, z, s) = t  

where, say, g(a, s + 1) = (x, t}. 

We distinguish the following two cases. Let 2(a, s + 1) = 2: 

(a) s + 1 is a-expansionary.  

In this case, define c(a, x, s + 1) to be a n e w  c E ~o. 

(b) If s + 1 is not  a-expansionary,  then let c(a, z, s + 1) =$,  for every z such 

tha t  2 < z. Define 

V ( a , s  + 1) ={c(a,z ,s) l  [z <_ g & z  ~ ~8+i1V z > 2} 

- U { a ( p ,  ~ + ~)1 p -~ ,~}. 

and 

Finally, let 

a ( : + , s +  1) = {c(mz, s+ 1)l z < g & z ~ ' + : }  

c ( a + ,  ~ + l) = {zl z _< e ~ z  # x ~  z e ~+'}.  

For every z E C(a +, s + 1) optimally choose (see Definition 5.2) a finite set 

A(a, z, s + 1) such tha t  

(Z,)~(a, Z, 8 -~- 1)> e n s + l  ~5 A(a, z, s + 1) C L[s + 1] 

and let 

~ ( a + , s  + i) = U ~ ( a , z , s  + 1). 
zEC(a+,s+l) 

If x E ~ + 1  and c(a, x, s + 1) E q~L[s + 1] then opt imally choose a finite set A 

such tha t  

(c(a, x, s + 1), A> E r & A _C L[s + 1] 

and let (x, A} E A s+i. 

I n i t i a l i z a t i o n .  If a ( a  +, s + l )  ~ a ( a  +, s), then initialize all T such tha t  a + --< T. 

Otherwise,  go and define ~s+l rn + 2, if n + 2 < s + 1. 
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5.2.4 a isan (NA,p)-node. Assume that 7~(a) = (Af, P): let v = o(a), let rr C_ v 

be such that  TO(re) = T', and let g be the outcome of u along a; finally assume 

that  (omitting obvious subscripts) 

P :  

and 

Let also 

Z : (~A~L  : ~ B @ L  =:::} Z : F L.  

U V(i,  s + 1) and Iv's~ 1 -- U Y(/), s + 1). 
~C u,s r4' IC  v ,~cT r@ 

In order to define E(a,s), we need to introduce an auxiliary parameter 

H(a, s+ 1) ordered by the (strict) linear order -<~ (assume that H(T, O) - -%- -  0_ O, 

for every z). The definitions of E(T, t) and H(T, t) are similar to the definitions 

of D(T, t) and G(z, t), respectively, given for the P-nodes. 

We first update H(a,s). If there exists x E H(a,s) such that x q~ pL[s + 1], 

then let 2 be the ~ - l e a s t  such number and let 

E(a,s  + 1) -- {y e H(a,s)[ y -~  ~}; 

if no such x exists, then let E(a, s + 1) = H(a, s). 
Let now 

H ( a , s +  1) -- E ( a , s +  1)U{y I (3A)[(y,A} �9 P s 

& A C L[s + 1] & y �9 ~(~-CA)~[s  + 1] - �9 (~-(cAuv(')))r [s + 1]}. 

Given any y �9 H(a, s + 1), let 

e(a ,y , s+  1) = min{t <_ s +  1[ (Vu)[t < u < s +  1 ~ y �9 FL[u]]}. 

Finally, for every y,y' E H(a,s  + 1), let y _<~+1 y, if and only if 

e (a ,y , s+  l) < e(a ,y ' , s+ l) or [e(a,y,s+ l ) = e ( a , y ' , s +  l ) a y <  y']. 

Let h(a, s + 1) be the canonical index of E(a, s + 1). Define 

a + = a^h(a, s + 1). 

Since E(a, s + 1) C FL[s + 1], for every y �9 E(a, s + 1) optimally choose (see 

Definition 5.2) a finite set A(a, y, s + 1) such that  

( y , A ( a , y , s + l ) } � 9  s & A ( a , y , s + l )  C_n[s+l ] ,  
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and a finite set fl(a, y, s + 1) such that /3(a,  y, s + 1) N ?s~l : 0 and 

y C ~/3(a,y,s+l)e)~(a,y,s+l) 

(if no such finite set exists then simply let fl(a, y, s + 1) = r Let 

l~(a +, s + 1) = U fl(cr, y, s + 1). 
yCE(a,s+l) 

Finally, let 

A(a+, s + 1) = U A(a, y, s + 1). 
y6E(a,s+l) 

49 

and 

B ~*1 -- (B[s] U U 13(T,S + 1)) -- U 
rCa rC_a,rET ~ 

For every a C_ 5~+1, let 

F~ +1 = F~ U {(x,A)l (z,A) enumerated into F~+I}, 
A~ +1 = A~ U {(x,A)l (x,A) enumerated into A~+I}. 

v(~, ~ + 1). 

Init ial izat ion.  If/~(a +, s+  1) r fl(a +, s), then initialize all 7- such that a + -'4 T. 

Otherwise, go and define 5s+1 In + 2, if n + 2 < s + 1. 

5.2.5 cr is an N B-nOde. Assume that 7~(a) = A/"B. This case is similar to the case 

of an NA-node, but  interchanging A with B, while considering the requirement 

~ : B = ~ 2  ~ - ~ : ~ .  

5.2.6 a is an (N B , P)-node. This case is similar to the case of an (N A, P)-node, 

but interchanging A with B and �9 with ~, while considering the requirements 

(assuming n(~) = (N~, Pd) 

and 

~ :  z, = ~ : ~ f ~  ~ z, : r~. 

Notice also that  in this case we define finite sets a(a, y, s + 1) (instead of 

fl(a, y, s + 1)) and a ( a  +, s + 1) (instead of/~(a +, s + 1)). 

5.2. 7 Final updating. At the end of stage s + 1 let 

A s+x = (A[s] U U a(T,s  + 1)) - U V(T,S + 1) 
rC_a rCa,~.ET ~ 
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6. T h e  v e r i f i c a t i o n  

We first show 

LEMMA 6.1 : For every n, 

( 1 )  O" n = l iminfs  5s In  exists. 

(2) an is eventual ly  never  initialized. 

(3) lim~ a ( a n ,  s), liras ~(a~ ,  s), and lims ,\(a~, s) exist  and are finite; moreover,  

wri t ing A(an) ----- lims A(an, s), we have that  A(an) C L. 

(4) I f 7  C an is a F-node, wi th  T~(T) = (P,  x),  and 7r C_ 7 is such that  7~(r) -- "P, 

and k is the ou tcome at ~- along as ,  then 

Ok = {AI (x,A} �9 F L & A c_ L]}, 

and for almost  all s, i f  T^M C_ ~ ,  then Dk C_ Dk,. 

(5) I f  r C a~ is an (N, •)-node, with 7~(r) = (Af, "iv), and 7r C_ r is such that  

~(Tr) = P ,  and h is the outcome at 7- along an, then 

Dh = {x] (3s)[x e H(T,S)  & x �9 FL]}, 

and  t'or a /most  all s, i f  TAh ' C 6~, then Dh C_ Dh,. 

Proof'. T h e  proof  is by induction on n. For n -- 0 the claim is trivial, being 

G O ~--~. 
Suppose  now t h a t  the c la im is t rue  of  n. Let  a s  = l iminf~ 6~ In,  and for every 

T -< an let a(T) = lim~ a(~-, s), fl(T) = lim~ fl(T, S), A(T) ---- lim~ &(T, S). 

Moreover,  

Definit ion 6.2: Let  t ~  be  the least s tage such tha t ,  for every s > t ~ ,  

�9 for all T -'~n o-n, T ~ (~s; 

�9 an  is not  initialized a t  s; 

�9 for a l l T _ a n  

a(T,S)  = a(T)  Z(~,S) = Z(T) A(T,S) = A(T); 

�9 for every F-node T C a~, if k is the ou tcome at  T along ~r,, then  for every 
k I , 

T^k  ' C_ 5s ~ Dk C_ Dk,; 
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�9 for every (N, ]?)-node r C On, if h is the outcome at  r along an, then  for 

every h' ,  

r ^ h  ' C_ 6~ ~ Dh C_ Dh,. 

We dist inguish the following cases, according as an is a D-node, a F-node,  an 

N-node, or an (N, IF)-node. 

CASE 1: an is a 1F-node. Then  obviously a , + t  = lim inf,  6, [ n + 1 = o ,  A0. T h e  

other  condit ions are tr ivial ly checked. 

CASE 2: a~ is a F-node. Assume tha t  7~(a,~) = (7)i, x),  and let rr _C (*n be such 

tha t  74(Ir) = Pi.  In order to prove (4), let D = {h I {x, ~) E F~ & ~ C L}. T h e n  

CLAIM: The  set  D is finite, and O'n+ 1 = O'n~U, where u is the canonical index o f  

D. 

To prove the claim, first notice tha t  D contains only finite sets A, such tha t  we 

enumera t e  an axiom (x, ~) E PSi, while acting, at  some stage s, at  some F-node 

rr' _ 7r, wi th  7~(7r') = (7)~, x). 

Consider  only axioms of this form enumera ted  at  stages s > t o .  

SUBLEMMA 1: I f  an -<L rr' then A ~: L. 

Proof: If an -<L 7r', then  there exists some longest T such tha t  rr C r C an, 

and the  ou tcome o a t  T along rr' is such tha t  an -4,L TAO. We have the following 

possibilities: 

(a) r is a F-node,  where, say, Td(T) == (Tr Let k be the ou tcome a t  r 

along crn; then  there  exists k'  such tha t  k < k'  and 7Ak ' C_ rr'. Then  by 

induct ion 

Dk = {hi (x, A) E F~,, & ,~ C L}. 

Suppose  tha t  s > t ~  is a stage such tha t  T^k  / C (~s. Then  by induction,  

there  exist a finite set ~ E Dk, - Dk, and, thus, ~ 5~ L. On the other  hand,  

if (x, A) E F,~ is an ax iom we define at s, while act ing at  rr', then we have 

t ha t  A D A. Hence ,k ~ L. 

(b) r is an N-node; assume for definiteness tha t  r is an NA-node: similar 

a rgumen t s  app ly  for NS-nodes .  Let  g = (y, u) be  the ou tcome at  r a long 

an.  Thus  there  exists g' such tha t  f < g' and T^~ ' C_ rr' C 6,. By  definit ion 

of t ~  and  since we are assuming to take act ion at  a s tage s >_ t~ , ,  we 

conclude t ha t  g is not  finitary, i.e. y r A L, but ,  at  s tage s, we have t ha t  

y E AL[s], and y E C( r^g ' ,  s); thus if (x, ;~) E F~ is the ax iom we define 
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at s at 7r', then we have tha t  ~(9-, y, s) C ~. Since A(T, y, s) ~ L, we have 

tha t  5k ~ L. 

(c) T is an (1N, P)-node; assume for definiteness tha t  T is an (NA,p)-node:  

similar arguments  apply for (1%t t3, P)-nodes. Let h be the outcome of 

along a~, and let s > t~. be such that  7r' c_C_ 5,. Thus  there exists h ~, with 

h < h'  such that  w^h  I C ?r I C (~s. It follows by induction that  

L Dh = {~1 (3t)[x �9 H(T,t)&x �9 r~,,]}, 

where T4(T) = (7~(u'), 7~(w")), for some N-node u' and P-node w". Since 

l iminfs  ~ [ 19-1 + 1 = T~h,  it follows by induction that  there must  exist 

x �9 Dh, and a finite set )~(9-, x, s) such that  x r rw,,L, and x �9 _~,,rX(~'~'~) and 

)~(T, X, S) C_ L[s]. The  construct ion ensures tha t  if (x, ~) �9 F~ is the axiom 

we define at  s at 7r', then A(~-, x, s) C A: but  A(T, x, s) ~ L, therefore 

~ r  

We have thus shown tha t  the set D, where 

D = {h I (x,X) �9 r ~ x  c L}}, 

is finite, since this set can contain only finite sets A such tha t  an axiom (x, A) E F~ 

has been enumera ted  only while acting at Crn, or at  some stage s < t ~ :  on the 

other  hand we either define at some stage s > t~. at an some axiom (x, A) C 

F,~ with A C L, in which case we eventually stop appoint ing axioms at  cry; or 

otherwise D =- ~. 

It  is now easy to see tha t  an+l  = an^u where u is the canonical index of D, 

and tha t  there  exists a stage t such that ,  for every s > t, if an^u ~ C_ 5s then 

D C_D,,,. 
Finally, we show (3) for an+l .  Given any ~ E D, since we always appoint  new 

coding markers  to enter  V(v, s), for v g an,  either at  some stage s >_ t ~  we find 

some finite sets a and /3  such tha t  x �9 r  + 1] N ~t3e~[s + 1] and 

~ n U { v ( , ~ , s  + 1)1 ~, c_ , ~ ,  ~ T N" } = e, 

~ n U(v (~ , ,  ~ + 1)1 ,,, c_ o ~ , ,  e T ~e } = r 

and, in this case, a(crn, A) = lims a(Crn, A, s) equals some such a,  and fl(an, A) = 

lims f l (an+l ,  A, s) equals some such/3; or for every s > t=. ,  

~(o . ,  ~, s) = /3 (o . ,  ~, s) -- 0. 



Vol. 110, 1 9 9 9  ENUMERATION DEGREES OF THE E ~ SETS 53 

In any case lime a(an+l ,S)  and lime ~3(an+l, s) exist. Hence, an+l eventually 

does not initialize any string % with an+l _ r.  

CASE 3: a n is an NA-node. Assume that T~(a~) = JV'k. Let 

A~,,---- U As 
s>_t~n 

Since K ~ L, and, thus, K ~ L A ~ ,  it follows from the observations in Remark 

5.5, that  g = lim infs g(an, s) is finite. Thus an+l = anA~. 
Clearly lime C(an+l, s) = C(an+l) exists and is finite, being 

C(an+ ) = {21 z ___ e z C K } .  

On the other hand, it is easy to see that lime c(an, z,s)  = c(an, z) exists for 

all z E C(an+x), hence limsa(an+x,S) = {c(an, z)[ z C C(an+l)}.  Thus an+l 

eventually stops initializing lower priority strings r .  

Moreover, for every x E C(an+l),  we are eventually able to appoint some 

(optimally chosen) finite set A(an, x) such that A(an, x) = lime A(an, x, s), with 
A;~(~,x) x C . . . .  and A(an,x) C_ L. Therefore A(an+l) = lime A(ams) exists and is 

finite, being A(a~+l) = [Jxcc(~+~) A(a~, x). We have also shown that A(a~+l) C_ 

L. 

CASE 4: an is an (NA,p)-node. Assume that T~(an) = (Af, P);  let 7r _C an be 

such that  7~(zr) = P,  and let u = O(an). 
We first show 

SUBLEMMA 2: liminf~ h(an, s) is finite. In fact l iminf h(an, s) -- h, where 

Dh = {xl (3s)[x E H(an, s ) & x  e FL]}. 

Proof." In order to show that (5) is true, we first observe: 

CLAIM: The set E,  where 

E = {x I (3s)[x E H(an, s ) & x  �9 FL]}, 

is finite. 

Indeed, clearly E contains only numbers x, such that we enumerate an axiom 

(x, A) C F~, while acting, at some stage s, at some F-node 7r' _D re, with 7r = 

(p,x). 
Consider now all F-node rt' _D 7r, with 7r = (P, x), for which we .define 

axioms (x, A) C FS~ only at stages s >__ t ~ .  

We distinguish the following two subcases. 
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S U B C A S E  1: drn "XL 71" I- We argue in this case as in the proof  of Sub lemma 1 

that ,  for every axiom ix, A) E F~ which we have enumerated  at a stage s > t ~  

at  ~r I, we have A ~ L. 

SUBCASE 2: drn C 7r'. Given any stage t, let us say tha t  x E H(an,t) because 

ofTr ~, if there is an axiom ix, A) E F~ appointed at 7r', at some stage s < t, such 

that ,  lett ing 

U v(f,,t), 
DCv,DcT rr 

we have tha t  ~ C Lit] and x E (I)(~-f~A)e~[t] - OY-(YAuY("))e~[t]. 

We claim tha t  there is no t such tha t  x E H(an,t), because of 7r': assume 

for a contradict ion otherwise, and let t be such a stage. Since we consider only 

axioms appointed  at ~r' only at stages s > tan, we may  assume tha t  t > G~. 

Thus,  there must  exist an axiom ix, A) E F~, appointed at some stage s such 

tha t  t ~  < s < t, while act ing at r ' ;  hence x E oAeL[S], and thus there exists a 

finite set a such tha t  x E ~ e ~  and a | ~ C_ A @ L[s]. Since an = lim infs ~s r n, 

and by our choice of G~, it easily follows tha t  

(~A  u V ( . ,  t)) n a = 

since at stages u > s only new numbers  (thus numbers  not in a)  can be appointed  

as new # - c o d i n g  markers (with ~,' _C ~, and # E T ~ )  and possibly enter Vt A, or 

V(~, t). Since this holds of every possible axiom appointed at 7r' at any s such 

tha t  t ~  < s < t, we have a contradiction. We therefore conclude tha t  the case 

x E H(an, t) because of r '  does not  hold. Hence, no r '  D an can contr ibute  

elements into H(an, t) for any t > ta . .  

We have thus shown tha t  the set E,  where 

E = { x  I (qs)[x E H(an,S) & x E FL]}, 

is finite, since this set can contain only numbers  x such tha t  either 

�9 axioms ix, )~) E F~ are appointed at stages s < t ~ ,  or 

�9 axioms (x, )9  E F~ are appointed at F-nodes 7r' (with T~(Tr') = (P,  x)) 

such tha t  r C_ 7r ~ C_ an,  but  only for finitely many  numbers  x does an 

axiom ix, )~) E F~ get appointed at any of these nodes. 

Let  now h be the  canonical  index of  E.  We are now in a posit ion to show t h a t  

Crn+j = lim inf 5~ I n + 1 = an^h. 
8 
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Clearly there exists a stage so > t ~  such that  Dh C_ Dh( . . . .  ), for every s >_ So, 

and 

(Vs > s0)(Vy e Dh)(Vx e H(a,s)  - Dh)[y -48 x] 
_ _ _ o -  n 

and - 4 a =  limb ~ exists o n  Dh, where, for any y,y~ C Oh, w e  have y -4~ y~ if - -  - - ( ~ n  

and only if, for some t0, t l  with to < tl ,  

(Vs > to)[y �9 r~[s]] ~y '  r r~[t,]. 

To show that  there are infinitely many stages s such that  h(an, s) = h, we 

show that  for every t > so there exists s > t such that  h(an, s) -- h. To this end, 

let t > So. Suppose that  s t _> t is such that  an C_ 58': then Dh C Dh(a~,8,). Let 
B ! us assume that  x C Dh(a,~,8,) - Dh, and x is the -% -least such element; clearly 

8 t 
x ~ F L, and, for every y C Dh, y -%~ x. It  follows that  at the least stage s > s ~ 

such that  an C_ (~s and x r F L[s], we define E(a~, s) -- Oh, hence h(a,~, s) = h. 
| 

It follows that  we eventually appoint some optimally chosen finite sets 

/3(an,y) -- liml3(an,y,s), A(an,y) = l imA(an,y,s)  
S 8 

for every y E Dh, such that  y E ~(~" 'Y)e~(~'Y),  and A(an, y) C_ L, and 

thus the set /3(an+l) = l imsf l (an+l ,s )  exists and is finite, being /~(an+l) ---- 

UyeDh 13(an, y). Finally we observe that  limb A(an+l, s) = A(an+l), where 

= U 
y c D h  

and A(an+l) C_ L. Thus (3) is true of an+l.  

It  then also follows that  au+l eventually stops initializing lower priority strings 

T .  

CASE 5: a n  is an NB-node. The verification is similar to Case 3, but 

interchanging A with B. 

CASE 6: an is an (NB,]P)-node. The verification is similar to Case 4, but  

interchanging A with B, and �9 with ~.  | 

Definition 6.3: By Lemma 6.1, let f be the infinite path  through T such that ,  

for every n, f In  = an. The pa th  f is called the t r u e  p a t h .  
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LEMMA 6.4: For every k, the requirements H A and Af B are satisfied. 

Proof: Assume that  n is such that  7~(f In) -- Af A (a similar argument applies 

if f In  is an NB-node). Then by Lemma 6.1, Case 3, liminf~ ~(f In, s) exists. 

The claim easily follows from the following sublemma. 

SUBLEMMA 3: I f  A = O L then -K = A L (where A ~  is defined as in Case 3 of 

the proof of Lemma 6.1). 

Proof: Let 

x = (el (3z)(3s > t ~ ) [ e  = c(~, ,  z, s)}. 

We in fact show that  A(c) ~ O~(c) for some c E X. Assume the contrary. Let 

lim~ g(a , ,  s) = (x, u), thus g ( x )  r A~, (x). 

Assume first that  x E K.  By definition of the length of agreement function 

and by construction, we have that  c -- lim~ e(a~, x, s) exists, and c E A. Since 

we are assuming that  A(c) L = �9 k (e), we are eventually able to appoint an axiom 

(x, A) c A ~  with c C O~ and A _C L, thus giving x E A L ,  contradiction. 

Assume now that  x ~ K.  Then for every s _> t ~ ,  it follows by construction 

that  c(a~, x, s) ~ A. Since 

(w)[ (~, ,~)  e ,',~o =~ (3~ _> t~.)[(~((,,, ,~, s),,\) �9 +~], 

it follows that  x r AL I 
G n �9 

LEMMA 6.5: For every i the requirement Pi is satisfied. 

Proof: Given i, we want to show that  

z i  = +~+L = ~ + L  ~ z~ =* r L 

where F --- F~ is the e-operator that  we construct at nodes ~" D a, with a C f 

such tha t  7~(a) = P.  

For simplicity, throughout the following proof, we will omit the subscript i. 

Let x be given. Let T C f be the F-node, such that  R(T) = (P, x), and, by 

Definition 6.2 and Lemma 6.1, let t~ be a stage such that  for every s _> t~, 

�9 for all r' "~L T, T ! ~ ~s; 

�9 for all p C_ 7, ~(p,s) = ) , (p ,G)(=  A(p)) and A(p) C_ L; 

�9 for every node ~, C_ T, if , -  is a NA-node then a (v , s )  = a(v,t~), or 

j3(v, s) = fl(~, t~) if v -  is a NS-node. 
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First  assume tha t  x �9 ~ A O L  A ~ B ~ L  Then  there exists a s tage t such tha t ,  

for every s >_ t, x �9 a2AeL[s] N t~BeL[S]. Since {s] ~- C_ 5~} is infinite, we can 

eventual ly  find a s tage to _> t~ such tha t  at  to we appoint  finite sets a, /3,  A A, A B 

such t h a t  
c~oAAC_AOL, /30ABC_B@L, 

and x �9 ~ e ~  V~ ~ ~ A B  and,  for every s _> to, 

,:,n U v(,.,s)=o and /3n U v(.,s)=o, 
uC r,uET r'g' vC_r,vET ~ 

and we appo in t  an ax iom 

(x,A A UA B U U{A(p) ]  p C_ 'r}> �9 F. 

Therefore  x �9 F L, since by L e m m a  6.1 A(p) C_ L, for every p c_ T. 

Assume  now tha t  Z ---- ~A@L : ~ B ~ L ,  and let, for a contradict ion,  x �9 F L - Z .  

Assume fur ther  tha t  axioms of the form (x, A) �9 F are only enumera ted  at  s tages 

s _> G ,  where  t~ is as given in Definition 6.2. 

Suppose  tha t  s0 _> G is the  least s tage such tha t  we appoint  a t  some 7r' _D a 

finite sets a = (~(~r', So),/3 = fi(~r', so), A A (Tr', so), A B (It', so) and we enumera t e  an 

axiom (x, A) ~ F with AA(71 -t, 80) U AB(71 -t, 80) C A C L. 

Then there must be some N-nodes u C f, such that our extracting activity 

on behalf of the Af-requirements located at those N-nodes prevents us from 

reinstating x �9 ffpAeA rh qBeA while acting at ~- (where T C f is the F-node, 

such that Ts = (i ~ x)), via enumeration or re-enumeration of suitable finite 

sets in A or B. 

Let u be the least N-node (assume for definiteness that u is an NA-node: similar 

arguments apply if v is an N B-node) such that a C v C T and 

where  

and  

x �9 �9 (~-~TA)ex - r (~-07AUv(€ 

f.A = {vl c . [ 9  �9 T NA �9 

v ( . )  -- {yl e v ( . , s ) ] } .  

Let  p C f be  the  (N, F) -node  immedia te ly  following u on the t rue  pa th ,  wi th  

TO(p) = (7~(u), P ) .  I t  follows f rom L e m m a  6.1(5) t ha t  x E Dh, where h is the  

ou tcome  at  p along f .  By  minimali ty,  there  is no N B-node u'  such t ha t  a C_ u I C u 

and  the  ex t rac t ing  act ivi ty  demanded  by "R(#)  interferes with res t ra ining some 
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finite set/3 C B to get x E ~B$~. Therefore, we can eventually restrain a finite 

set fi(~r, x) = liras fi(~r, x, s) C B such that x E ~(~ '~)$x.  

This shows that  x E k oB~L -(~A@L, contradicting the hypothesis that  ffpA~L = 
~B(~L. 

This concludes the proof of the theorem. | 

7. L a t t i c e  e m b e d d i n g s  

[Lac72] shows that  the nondistributive lattice M3 (see Figure 1) can be embedded 

into the low c.e. Turing degrees. By [MC85], it follows that  every lattice which 

is known to be embeddable into the low c.e. Turing degrees (and thus M3 as 

well) can be embedded into | since, under such an embedding, the e-degree 

corresponding to the top element is incomplete and, thus, branching by Theorem 

1.3, there follows*: 

THEOREM 7.1: The lattice Ss of  Figure 1 can be embedded into | 

Proos Trivial. 

Since Ss is not embeddable into the c.e. Turing degrees (see [LS80]), it follows 

that  the class of finite lattices that are embeddable into G properly extends the 

class of finite lattices that  are known to be embeddable into the c.e. ~ r i n g  

degrees. 

M~ Ss 

Figure 1. 

* We thank R. Shore for pointing out to us this consequence of Theorem 1.3. 
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