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ABSTRACT

We show that every incomplete £ enumeration degree is meet-reducible
in the structure of the enumeration degrees of the £J sets.

1. Introduction

Informally, a set A is enumeration reducible to a set B if there is an effective
procedure for enumerating A, given any enumeration of B. Following [FR59] and
[Rog67], this is usually formalized using the notion of an enumeration operator.

Definition 1.1: A mapping ®: 2¥ — 2“ is an enumeration operator (or,
simply an e-operator), if there exists a computably enumerable set W such

that, for each set B,

@8 = {z| (Ju)[(z,u) e W& D, C B},
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where D, denotes the finite set with canonical index u, and { , ) denotes the
usual pairing function.

If the c.e. set W, defines the e-operator @ in the sense of the above definition,
then we let ® = ®,. Let {W,| z € w} be the standard enumeration of the c.e.
sets: we get a corresponding enumeration {®.] z € w}/ of the e-operators. If
{W?| s € w} is a computable enumeration of W, (in the sense of [S0a87, p. 34)),
then we get a corresponding computable enumeration {®}| s € w} of the
e-operator ®,. We will refer in the following to some fixed computable sequence
{W, s z, s € w} of finite sets, such that, for every z, {W}| s € w} is a computable
enumeration of W,.

Given sets A, B, we say that A is enumeration reducible (or, simply, e-
reducible) to B (notation: A <. B), if there exists some e-operator ® such
that A = ®5.

It is easily seen that <, is a preordering relation. Let =, denote the equiva-
lence relation generated by <.. The =.-equivalence class of a set A (denoted by
deg,.(A)) is called the enumeration degree (or, simply, the e-degree) of A.
On e-degrees the reducibility <. originates a partial ordering relation (denoted
by <). We therefore get a degree structure (D., <}, where D, is the collection
of all e-degrees and < is defined by: [A]. < [B]. if and only if A <, B. In fact
De. is an upper semilattice with least element 0, and binary operation U: the
least element O, is the e-degree of the c.e. sets, and [A]e U[B]e = [A ® B]., with
A@® B = {2z] z € A} J{2z + 1| = € B}. The reader may consult [Co090] and
[Sor97] for an extensive survey and bibliography on the e-degrees.

An important class of e-degrees is constituted by the T e-degrees, i.e. the
e-degrees of the 3 sets. It is known, see [Coo84] and [McE85], that the X3 e-
degrees coincide with the structure & = D.(< 0,), where 0/, = deg,(K), K being
the complement of the halting set K: in fact, A <. K if and only if A € 9.

Although, under several respects, & can be viewed as the e-degree theoretic
analog of the structure R of the Turing degrees of the c.e. sets (as suggested
for instance by Cooper: see the density theorem for &, [Coo84]; see also [LS92]),
there are striking elementary differences between the two structures. For in-
stance, [Ahm91] shows (in contrast with the Lachlan Nondiamond Theorem for
1R, see [So0a87, p. 162]) that there exist (in fact, low) e-degrees a,b € & such
that aUb =0, and anb = 0,.

We show in this paper another elementary difference between & and R, that
relates to the notion of branching.
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Definition 1.2: Let P = (B, <) be a partial order. We say that an element
c € P is branching (or meet-reducible) if

(Jae P)(Ibe Plc<a&c<b&c=aAd)

An element ¢ € P is called nonbranching if it is not branching.

[Lac66] proved the existence of incomplete nonbranching elements in R. Subse-
quently, [Fej83] proved that the nonbranching elements of %R are dense.
[S1a91] proved the density of the branching elements of R.

We prove here a rather surprising result for 6. All elements a € &, with
a < 0., are branching in &:

THEOREM 1.3: For every incomplete ¥ enumeration degree c there exist enu-
meration degrees a,b < 0, such that:

(1) aUeLec, bUc£c,
2)c=(auc)n(buc).
In the following, suppose that L is a £J set such that L <. K, and suppose we

are given some %3 approximation {L®| s € w} to L, i.e. a computable sequence
of finite sets such that

L = {z| (3t)(Vs > t)[z € L°]}.
For more on ¥-approximations, see [LS92]. Finally, let
K ={z<s|z¢ K}

(where {K*| s € w} is a computable approximation to the halting set K).

2. The requirements

Given L <, K, we will construct Y9 sets A, B by stages. At stage s of the
construction, given any expression A, we will often write A[s] to denote the
evaluation of the expression at stage s: see [Soa87, p. 315] for this notation.

If, at stage s, we define the current value of a set X[s], we will write z \, X[s]
to mean that we enumerate  (or z gets enumerated) into X [s] (hence z € X[s])
and z  X[s] to mean that we extract z (or z gets extracted) from X{s] (hence
T ¢ X[s]). If E is a finite set, we use similar notations: E \, X[s] (i.e.  \, X[s],
allz € E) and E 7 X|s] (i.e. z / X][s], all z € E).
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Let {(®;, ¥;)}icw e an effective listing of all pairs of e-operators.
In order to prove Theorem 1.3, we want to construct X3 sets A, B satisfying
the following requirements, for every i,k € w:

Pt Z; =0 =9B o 7, =TL,
Ng: A=ef 5K =A%,
NE: B=9f=K=AL,,

where I';, A4, Ap , are e-operators to be constructed.

We say that a requirement R is a P-requirement if, for some i, R = P;;
in a similar way, we talk about A-requirements, A “4-requirements and N 5-
requirements.

We order the requirements according to the following linear ordering (called
the priority ordering of the requirements):

A B A B
Py KNP <N < Pign <N <N

with i € w.

3. The strategies
We outline the strategies used, in isolation, to meet the requirements.
3.1 THE ATOMIC MODULES.

3.1.1 The requirement P;. For simplicity, let us drop the subscript ¢; let Z =
AL N gBSL,

If z € Z — T, then choose finite sets a, A%, 8, A2 such that
(x,adX)ed (¢,fdI\B)e U

and
a®dIMCA®L BaNCBeL,

and enumerate an axiom (z,A) € T, with A D A2 U AB.

3.1.2 The requirement NA. For simplicity let us drop the indices 4, k.
If all numbers y < = have been chosen, and no such y is currently at 2(a), or
3(i) of the basic module below, then choose z; pick up a new number ¢;:

1. if K(x) = AX(z), then do nothing;

2. if z € K — AL, then define ¢, € A:
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(a) wait for c; N\, ®F;
(b) choose an axiom {(c;,A) € ® such that A C L and enumerate the
axiom (z,A) € A;

{c) return to 1.;
3. if z € AY — K then extract ¢, from A;

(i) wait for ¢, ~ ®L;

(ii) return to 1.

The numbers ¢, will be called coding markers.

3.1.3 The requirement N, ,f . The module in this case is of course similar to the
module for N, but replacing A with B and Ay with Ap . We skip the
obvious details.

3.2 ANALYSIS OF OUTCOMES. We briefly discuss the possible outcomes of the
above strategies.

3.2.1 The requirement P;. For simplicity, let us drop the subscript <.

The strategy here aims at defining suitable axioms (z, A) € T, for z € Z. Note
that if, eventually, « C A and # C B (i.e. the extracting activity of the N-
requirements does not interfere with P, see Section 3.3), then z * Z = z ATF
by automatic I'-rectification: indeed, if @ C A and 8 C B and z ¢ Z, then
MUMB Z L, hence A Z L (where A%, A\B are as in 3.1.1 and X D A4 U AB).

3.2.2 The requirement J\/',f. For simplicity, let us drop the indices A and k.

The finitary outcome 2(a) corresponds to ¢, € A — ®L; infinitely many loops
through 2(c), in relation to some z, correspond to the case ¢, € A — ®L. The
finitary outcome 3(i) corresponds to ¢, € ®F — A. Infinitely many loops through
3(ii) imply = ¢ AL. If no z gets stuck at 2(a) or 3(i), and yields infinitely many
loops through 2(c), then we get K = AL (contradicting that L <. K). Since
L <. K, there must exist some number z such that the only allowed outcomes
are therefore the finitary outcomes 2(a), 3(i) or the infinitary outcome 2(c).

3.2.3 The requirement N;B. See the discussion relative to the outcomes of N2,
but replacing A with B and A4 with Ap .

3.3 INTERACTIONS BETWEEN REQUIREMENTS. The extracting activity of the
N-requirements conflicts with the activity of the P-requirements, consisting in
defining I'-axioms. We explain below the nature of these conflicts and how to
combine the different strategies.
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3.3.1 A P-requirement below an N -requirement. We consider only the case of
an N-requirement of the form A, above some P;: the case of a requirement of
the form NP is similar.

For simplicity, let us omit the subscripts k& and 4, and the superscript A.

A somewhat problematic case is when we go through 3. of the basic module of
N on behalf of infinitely many numbers z, ending up with a (possibly) infinite
set V (consisting of numbers ¢, corresponding to numbers z such that z ¢ K)
being extracted from A. How does P, acting after N, account for this infinitary
extracting activity?

We measure the length of agreement between K and Al by a length of
agreement function £(k,s), such that K = Al & lim,¢(k,s) = +4oo: thus
£ = liminf, £(k, s) exists and is finite.

We will guarantee that

A=0l =K =A%,

so that, eventually, A # ®L.

The number £ will be of the form ¢ = (z,u), with K(z) # AX(z). We can
therefore distinguish two outcomes: a finitary one (z € AL —K), and an infinitary
one (z € K — AL; this latter outcome may be infinitary since there might exist
infinitely many stages s such that, at stage s, z € AL). The problem here is
that while working below outcome £, P cannot foresee which numbers y, that
are currently in X, will be later removed from K, forcing the strategy to extract
the corresponding number ¢, from A. We go around this problem by extracting
all current c,’s, corresponding to actions undertaken to the right of the current
path (i.e. with y > £), pending our decision to enumerate again in A a new ¢,
at the next stage s at which y < #(k,s) and y € I’e {so that eventually, for some
¢y, we have that ¢, € A if y € K and lim £(k, s) = +00).

We hence arrange things so that the extracting activity of AV results in extract-
ing a (possibly infinite) computable set V' from A, by simply amending the basic
module with the addition of the following clause:

if y > £, then extract also ¢, from A.

The P-activity (consisting in enumerating '-axioms) can easily deal with these
extractions from its position on the tree of outcomes.

3.3.2 An N -requirement below a P-requirement. We consider only the case of
an N-requirement of the form A}* below some P, the case of N2 being similar,
and we omit obvious subscripts and superscripts.
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It is clear from the discussion in the previous subsection that the extracting
activity of A interferes with the strategy of P in that N-extractions may result
in forcing numbers z to leave ®4®L; thus z / Z, and this implies that we need
z 2T if we hope to maintain the equation Z = I'L.

We need therefore to consider what happens when, for some 2z, at some stage,
z € Z = ®A®LNYBSL 4nd we consequently enumerate an axiom (z, ) € T, with
A C L, in order to have z € I'F| and subsequent extracting activity demanded by
N will force z to leave ®A®L and thus, Z, so that we need to extract z from 'L,

Enumerating I'-axioms at sufficiently large stages. We deal with the difficulties
entailed by the IIJ hypothesis ®4®L = ¥BOL of P, by dispersing down through
the tree of outcomes our attempts at diagonalizing against ®4®L = YBOL a5
well as the enumeration of the I-axioms. Therefore for almost all z, axioms of
the form (z, ) € T will be enumerated only after acting at A'. Thus, for almost
all z, we enumerate axioms (z,A) € T only at stages s such that ¢(k,s) > ¢,
where ¢ = {z,u) = liminf, £(k, s). Clearly, enumeration of a I'-axiom below ¢, if
£ is the finitary outcome at N, does not present any problem. On the other hand,
enumeration of I'-axioms below or to the right of the infinitary outcome at A’
(that is, z € K — AL) can also be easily dealt with for the following reason: if we
work at stages s such that £(k, s) > (z,u), then we are assuming that z € AL[s],
thus we enumerate axioms (z,)\) € I', with A containing the Al-use of z (i.e.
z € A* and A C L at stage s). Since z ¢ AL, it follows that A € L, thus none of
these axioms applies to get z € I'L.

We may therefore conclude that there are only finitely many numbers z such
that (letting V be the possibly infinite set eventually extracted by A) we have
that z * Z, due to V7 A, but £ € T'L. These numbers are included among
those numbers z for which we enumerate axioms (z, A) € I before acting at N.

We deal with these finitely many numbers z by looking for opportunities of
diagonalization, thus getting ®49L(z) # WP (1), as follows: if x ¢ SAPL, due
to the extracting activity of A, then we restrain some finite 3 C B such that
z € UPOL_ If, following this action, no L-change occurs yielding z * ¥#®L (and
thus z ~ I't), then we win the requirement P, since we get x ¢ UB®L _ pASL,
otherwise we get z 'Y, thus restoring the equation Z(z) = I'’(z): in this
latter case we drop any previous restraint.

Here is a more schematic description of the above strategy.

If €Tt and z  Z (due to M) and z ¢ ®49L, then pick finite sets 8 and )
such that
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(i) £ € PO (2 )\) €T and A C L: enumerate 3 in B, and restrain 8 C B;

(i) wait for z  WP®L (thus it is not the case that x € I'F, via the axiom
{z,\} € T, due to some L-change relative to some element of \};

(iii) drop any restraint.

Infinitely many loops through (ii) yield z ¢ I'Y; otherwise x € ¥B®L — pA®L,
This restraining activity (taken care of by N and located at the appropriate
(N, P) of the tree of outcomes) does not prevent lower priority requirements from
being satisfied, since it is finitary, referring only to finitely many numbers z.
A more detailed discussion of how to combine the strategies will be in reference
to the tree of outcomes, described in next section.

4. The tree of outcomes

In this section we define the tree of outcomes T', which is going to be a subset
of w. Let R be the set of all requirements, and let P and N denote the sets of
P-requirements and N -requirements, respectively. The set N is partitioned into
N4 and NB , i.e. the sets of N4- and A B-requirements, respectively. Together
with the tree of outcomes, we will define also the requirement assignment
function, i.e. a function R : T — RU (N x P) U (P x w).

The elements of T' will be called strings or nodes. We will distinguish the
P-nodes, the N-nodes (partitioned into the N*- and the N®-nodes), the (N, P)-
nodes (again, partitioned into the (N4, P)-nodes and (NZ,P)-nodes), and the
I'nodes. If ¢ is a P-node, then R(o) is a P-requirement; if ¢ is an N-node,
then R(o) is an N-requirement; if o is an (N,P)-node, then R(s) € N x P,
i.e. R(o) = (NV,P), where N is an N-requirement and P is a P-requirement;
finally, if o is a I-node, then R(o) = (P, z), where P is a P-requirement and
T € w. Along any infinite path of T, the assignment of requirements to nodes is
according to the priority listing of the requirements. The meaning of the I"-nodes
and of the (N, P)-nodes will be explained in Subsection 4.2.

Before giving the formal details, we give some intuition underlying the defini-
tions of T' and R. With the exception of the P-nodes, having only one outcome,
each node has countably many outcomes (with order type w). Along any infinite
branch f of the tree, each P-node is followed by a I'-node; each I'-node is followed
by an N4-node; if o C f is an N4-node, and R(c) = N, then o is immediately
followed by k + 1 (N,P)-nodes 79,..., 7, where R(;) = (MA,P;), with P; the
i-th P-requirement in order of priority; the last su¢h (N, P)-node is followed by
an NP.node; as for the NA-nodes, if ¢ C f is an N®-node and R(c) = NZ,
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then o is immediately followed by &k + 1 (N, P)-ncdes; the last such (N,P)-node
is followed by an P-node; finally, if o C f is a P-node, then for every z € w there
exists exactly one I-node 7 such that 0 C 7 C f and R(r) = (R(0),2), and for
no 7/ C ¢ can we have R(7') = (R(0),y), for any y.

Definition 4.1:

T and R are defined by induction as follows (we assume that

P x w is ordered as follows: let (P;,z) < (Py,z’) if and only if (i,z) < (7, 2};
when referred to requirements, the term “least” below, unless otherwise specified,

always refers to the priority ordering of the requirements):

1

2.

0 € T; 0 is a P-node; R(0) = Py;
if 0 € T and o is a P-node, then 670 € T; 070 is a I'-node; finally,
R(c70) = least{(P,z) € P x w| (V7 C o)
[R(7) # (P,2)] & (3T C 0)[R(7) = P]};

if o € T and ¢ is a Inode, then, for every n, 6" n € T and ¢"n is an
N-node; let

R(c"n) = least{N € N| (V7 C 0)[R(7) # N}

if 0 € T and o is an N“4-node, then, for every n € w, 6™n € T; 0"n is an
(N4, P)-node; R(c™n) = (R(0), Py).

Finally, let o(c"n) = o (see Remark 4.2 below);

. if ¢ € T and ¢ is an NB-node, then, for every n € w, 6"n € T; 0" n is an

(NB,P)-node; R(67n) = (R(c),Po).
Finally, let o(oc™n) = o;
if o € T and o is an (N4, P)-node, and, say, R(c) = (N4, P) with P <
NA and
{REP|P<RINA} £,

then let 6" n € T, for every n € w; the nodes 0™ n are (N4, P)-nodes; we
define R(07™n) to be (M4, P’), where P’ is the least requirement R € P
such that P < R < NA.

Let o{o™n) = o{o), for every n € w;

. if 0 € T and o is an (N4, P)-node, and, say, R(c) = (N4, P) with P <

NA and
(ReEPP<RINAY =9,



38 A. NIES AND A. SORBI Isr. J. Math.

then let 0™n € T, for every n € w; the nodes 6" n are NB-nodes; we define
R(07n) to be the least NB-requirement R with R > N'4;

8. if 0 € T and o is an (NB,P)-node, and, say, R(0) = (NB,P) with P <
NB, and
{(ReP|P<R<NB}#£0,

then let 0™n € T, for every n € w; the nodes o"n are (N2, P)-nodes; we
define R(c™n) to be (NB,P’), where P’ is the least requirement R € P
such that P < R < N'B.

Let o(c"n) = o(0o), for every n € w;

9. if 0 € T and o is an (N?,P)-node, and, say, R(c) = (NB,P) with P <
NB, and
{ReEPP<RSN}=0,

then let 0”™n € T, for every n € w; the nodes ¢"n are P-nodes; we define
R(c™n) to be the least P-requirement P > N'B.

We will sometimes write 0 € TN, o € TNA, o€ Tw, if o is an N-, N4-, or an
NB.-node, respectively.

Remark 4.2: We notice:
1. if ¢ is an (N, P)-node, then o(c¢) denotes the largest N-node 7 C o;

2. if R{o) = P;, we will sometimes happen to write
Z, =03 =wlOl 5 7, =TL

instead of
Z; =00 —gBeLl o 7. _ L
(and similarly Z, for Z;, ®, for ®;, etc.).
Similarly we may write
A= =>K=A%,
instead of
A=%;=>K=A4,

(and similarly ®, for ®, etc.), if R(o) is an NA-requirement; we use
similar notations for NB-nodes.
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Definition 4.3: Let {{,| 0 € T} be a computable partition of w into infinite
computable sets. The elements of £, may be chosen to be appointed as o-coding
markers.

4.1 NOTATION AND TERMINOLOGY FOR STRINGS. We use standard terminol-
ogy and notations for strings. In particular, given any o € T, let |o| denote the
length of o.

Given o,7 € T, let ¢ < 7 if and only if either ¢ C 7, or y(o,7) | and
o(y(o, 7)) < 7(y(o, 7)), where y(o,7) is the least number, if defined, such that
y < |o|,|7| and o(y) # 7(y)]. We say that o is to the left of 7 (notation:
o <p 1),if 0 X7, but ¢ € 7. Given a string ¢ and a number %, the symbol
o | y denotes the initial segment of ¢ having length y. If jo| > 0, then let
o-=ol|o]-1.

If o € T, and n € w is such that ¢”n € T, then we say that n is an outcome
at o. Finally, if 7 C ¢ and 7 = 77"z, then we say that z is the outcome at 7~
along o.

4.2 ANALYSIS OF TREE OUTCOMES.

We give now intuition for the construction, which is formally explained in the
next section.

1. If o is a P-node (say R(o) = P;), then we observe that we have no distinct
outcomes at . We just regard o as the node at which we start our strategy
for the corresponding P-requirement, by routinely updating the operator
I';. The eventual success of the strategy will need the cooperation of the
lower priority M-requirements. The updating strategy will be dispersed
through the infinitely many I-nodes 7 2 o with R(r) = (P;, z), for some
z.

2. Let o be a Inode (say R(0) = (P;,z)). The I'node o is devoted to
defining suitable axioms (z, A) € Iy, where 7 C o is such that R(x) = P;.
If z € &% N WBOL _TL a stage s, then we suitably choose finite sets
a, B, A%, AB such that, at stage s,

A B
z € oF Nl

and a® N C A L,and B \B C B® L. We enumerate an axiom
(z,A) € Ty, where A C L? and A D A U AB, and ) is large enough to
contain all finite sets A(p, s) such that p C ¢ and A(p,s) C L®. We now
briefly explain what the sets A(p, s) are, for p C 0.
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o If v is a I™-node, and n is the outcome at v along o, i.e. p =" n C o,
then we let

Mp,) =0\ A € D)

where Dy (the finite set with canonical index k), also denoted by
D(v,s) in the construction, is the current guess, at stage s, at the
eventually finite collection of finite sets A’s such that (x,\) € T'; and
ACL.

e If v C o is an N-node, and £ is the outcome at v along o, i.e. p =
v ¢ C o, then we single out a suitable set of numbers z such that
z € AL at stage s, and, for each such z, we will denote by A(v, z, s) a
suitably chosen finite set such that A(v,z,s) C L® and z € AJ*"™®):
if C(p, s) the set of all such numbers z, then finally we let

Ap,s) = U Ay, z,8).

z€C(p,s)

o Similarly, if v is an (N, P)-node (where, say, 7’ C o is the correspond-
ing P-node, i.e. R(v) = (N',R(n")), for some N') such that v C o,
n is the outcome at v along o, i.e. p=v"n C o, then we will denote
by A(p, s) the finite set

Me,s) = |J Mvy:9)

y€Dy

where Dy, (also denoted by E(v,s) in the construction) is the cur-
rent guess at the (eventually finite) set of elements leaving Z,+ as a
consequence of the extracting activity of R(o(v)), but D, C T'L, at
stage s; by A(v,y,s) we mean some suitably chosen finite set such
that y € T2®¥*) and A(v,y,s) C L*.

Notice that, in all cases, A(p,s) C L*.

Remark 4.4: Notice that any L-change at some later stage ¢, relative to
any of these sets A(p,s) (i.e. Mp,s) € Lt), will entail A € L?, for the X
used in the new I'; axiom. This is a crucial point for the success of R,:
if 7 is on the true path, then the construction guarantees that all axioms
(z,\) € T'y defined while acting at a stage s at some string to the right
of the true path are such that A will contain some set A(p,s) such that
Ap,s) Z L, so these axioms do not apply to get = € I'L.
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If n is the outcome of o at s, at ¢”n, for each A\ € D,, we restrain finite
sets a(o, A, s) C A and B(0, A, s) C B such that

x € @a(a,/\,s)@)\ N \I]:B(UVAVS)@A

(let a(o,A,s) = 0 and B(o,A,8) = 0 if no such finite sets exist) by
restraining the finite sets

a(c™n,s) = U ala, A, s), Bla"™n,s) = U Bla, A, s)

AeD, AED,

in A and B, respectively. Following this restraining action, if A C L for
some A € D,, then the only A-requirements that are allowed to force
x /' Z; are those of higher priority than R, .

Notice that we drop any restraint when we move along ¢~ 0: the tree
outcome 0 corresponds to the case z ¢ I'Z.

3. Let o be an N-node. Assume for simplicity that ¢ is an N4-node, the case
of an NZ-node being similar. We define a length of agreement function
£(0,s), and we show (with ¢ on the true path),

lim¢(a,s) = +oo = K = AL

On the other hand, the construction guarantees that
A=0r=K=AL

It then follows that liminf, £(, s) = £ is finite, and thus A # ®L. We give
outcome £(a,s) at o at s.

The outcome £(o, s) will be of the form £ = (z,u): we aim at getting either
z € K — AL (and in this case, for every s >u, t € K ),orz € AL - K
(and in this case, for every s > u, z € AL at stage s).

Each coding marker ¢ (see Definition 4.3) will be chosen from &,: the
coding marker of z, when chosen at some stage s, will be denoted by
c(o, z, 5).

If £ = (z,u) is the outcome at o at stage s, then we extract from A®
a finite set V(o,s), consisting (modulo higher priority constraints) of all
previously appointed coding markers c,, corresponding to the numbers y
such that y > £, ory<fandy ¢ K.
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We refer the reader to Subsection 3.3.1 for a discussion relative to this
extracting activity. Notice however that, in accordance with Subsection
3.3.1, if £ = liminf, £(0, s) then we do not have K (£) # AL(£), but rather
K(z) # AL(z), where £ = (z,u), for some u.

. Let o be an (N,P)-node. Assume for simplicity that o is an (N4, P)-node,

the case of an (NB,P)-node being similar.

Let R(0) = (N2, P:), and let w C o be such that R(r) = P;. At this node
o we monitor the effects on R(7) of the extracting activity done on behalf
of R(o(0)), with N2 of lower priority than P; (recall that R(o(0)) =
N{: let us write v instead of o(c)). Suppose that at stage s we need to
extract V (v, s) from A, as demanded by the strategy for R(v) (let us write
V =V(v,s)). Let us use the symbol E to denote the finite set E(c,s) of
numbers such that, at step s:

VA= E ) Z;&ECTE

(where, of course, for any = € E, axioms of the form (z, ) € I'r have been
previously defined).

We give outcome h = h(o, s) at o at s, where h is the canonical index of
E. If E # 0, then we restrain at ¢~ h some finite set ' C B such that
E C UF®L We use the symbol 3(c”h, s) (a(0”h, s), respectively, if o is
an (NP, P)-node) to denote such a finite set F: in fact, for every z € E,
we suitably choose finite sets (o, z,s) (respectively, a(o,z,s) if o is an
(NB,P)-node) and Ao, x,s) such that z € Ph(o:z:8)0No:2:8) | B(g, 1, 5) D
Mo, z,s) C BL[s] and (z, A(0, z,s)) € I, and we restrain 3(o,z,s) C B
(a(o,z,s) C A, respectively, if o is an (N?,P)-node), by restraining the
finite set

B(c"h,s) U B(o,z,s)
z€E(0,3)
in B (respectively, a(0™h, s) = U,cp(s,s) @(0,7,5) in 4, if g is an (NB,P)-
node).
If o is on the true path, we will show that h = liminf; h(o, s) exists. There
are two possibilities:

e If we get outcome 0 at o infinitely often, then there is no damage
caused to R(m) by the extracting activity done on behalf of R(v),
since, for all possible z such that z » Z; due to R(v)-extractions,
we get z / T'L due to infinitely many corresponding L-changes.
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e Otherwise Dy, # 0. Then, either for some z € Dj our restraining
activity at o"h gives z € UB®L _ $ABL: this yields an outright win
of R(w); or x € ®ASL N YBOL for all z € Dy, showing that the
R (v)-extractions do not interfere with the equation Z; = I'L.

Thus the outcome Dy, # 0 entails a successful diagonalization against
the hypothesis ®ASL = YBSL of the P-requirement corresponding
to the (N,P)-node o.

5. The construction

The construction is by stages and aims to define suitable recursive sequences of
finite sets {A°| s € w} and {B?| s € w}, such that the X sets

A={z] G)(Vs > )z € A%} and B = {z] Ft)(Vs > t)[z € B°]}

satisfy the requirements of Section 2.

At stage s'we define a string §, € T (with |d,] = s), together with the values
of several parameters. The intuitive meaning of all relevant parameters has been
already explained in the previous section.

For every o € T and stage s, let

(o, s) = max{t < s| 0 C &;} if any,
’ s otherwise.

Definition 5.1: 'Throughout the following, given any e-operator ® and any 9 set
X with a X3-approximation {X°}se., by {®X }sc. Wwe mean the
3J-approximation to ®X defined in [MC85, Proposition 5. While acting at
o at stage s (i.e. o C 4,), given any %9 set X with a given X3-approximation
{X*}scw, we will write (for v such that t(o,s) < v <s): z € X[v), if

(Vu)it(o,s) Su<v=ze€ X"
Definition 5.2: Let P(y,s) be any relation. If P(y,s) holds, then let
ty(s) = least {t| P(y,t) & (Vu)[t <u < s= P(y,u)]}.

We say that we optimally choose y for P at stage s if y is the least number
among those with minimal ¢,(s) (in fact, y can be (the code of) a finite set or a
pair of finite sets, etc.).

At step s, any parameter p retains the same value as at the preceding stage,
unless otherwise specified by the construction. Any parameter p is by default



44 A. NIES AND A. SORBI Isr. J. Math.

undefined (i.e. p =t if p ranges through the numbers, and p = @, if p ranges
through the finite sets).

The e-operators I'y, A4 ¢, Ap,, Will be defined through computable approx-
imations (modulo identification of each e-operator with the corresponding c.e.
set): at stage s we define I'S, A3, A2,

5.1 STEP 0. Let &g = 0. For every o € T let
V{(0,0) = E(0,0) = o(0,0) = B(5,0) = A(0,0) = A (0,0) = AB(5,0) = 0.
For every 0 € T and z € w, let
alo,2,0) = B(0,2,0) = Mo, 2,0) =0
let ¢(0, z,0) =1, £(0,0) = h(c,0) =1, T = Al = 0.
Finally, let A°® =@ and BY = 0.

5.2 STEP s+1. Assume that we have already defined d541 [n (with ds41 [0 = ).
Ifn+1 < s+ 1 then we proceed and define o+ = 6,41 |7+ 1 according to which
of the following cases applies. Otherwise we go to step s + 2.

Before distinguishing the various cases, we first give the following definition:

Definition 5.3: If A = A(A,B,L) is any expression involving A, B or L, we
write Ao, s + 1] to denote A(4lo, s + 1], Blo, s + 1], L[s + 1]}, where
Alo,s+ 1] = (AlsJUulU,c, r, 5+ 1)) = U, c, rerm VT, 5 +1),
Blo,s+ 1] = (Bs] U Uy ey A(r,5 + 1)) = Ungy v V(7,5 +1).
5.2.10 is aP-node. Let 07 =070. Go and define ;41 [n+2,ifn+2<s+ 1.
5.2.2 0 is a-node. Assume that R(o) = (P;,z), where

P Z=0M0L - gB®L o 7, =L

with m C o such that R(x) = P;. In the following, drop the subscript ¢ and write
r=ry,.

1. If 2 € ®49L(g,5 + 1] N ¥B®L{p,5 + 1] — ['L[o,s + 1], then optimally
choose finite sets o, 3, A4, AB, according to Definition 5.2, where we take
as P({a, B, A4, AB) s + 1) the relation that holds if and only if

(x,a ® \*) € ®°,
(z,8® \B) € U°,
and
a® M C(A® L)o,s + 1],
B@®AB C (BoL)o,s+1)].
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-updating. Enumerate (z,)) € '+, where

/\:)\AU)\BUU{)\(p,S—I—l)]pQU}.

2. We now define the outcome at o. For this we need to introduce an auxiliary
set G(0,s + 1) linearly ordered by the (strict) order <7, (assume that
G(r,0) =<§=90, for all 7).

We first update G(o, s). If there exists a finite set A € G(a, s) such that
A € L[s + 1], then let A be the <¢-least such set and let

D(o,s+1) = {A e G(o,s)| A <5 A}

if no such A exists, then let D(o,s + 1) = G{o, 3).

Let now
G(o,s+1)=D(o,s + 1) U{A| (y,A) e T°& X C L{s + 1]}.
Given any A € G(o,s + 1), let
d(o, M\, s+ 1) =min{t <s+ 1| Vu)t <u<s+1= \C L[]}
Finally, for every A, X' € G(o,5+ 1), let A <31 X’ if and only if
d(o, A\, s +1) <d(o,N,s+1) or [d(o, A\, s + 1) =d(o, N, s+ 1) & < ]

(where we say that A < )\ if the canonical index of X is smaller than the
canonical index of \’). Let k(o, s+ 1) be the canonical index of D(c, s+1).
Define

ot =0"k(o,5+1).

Having defined the outcome, next we look for finite sets o,3 to be
restrained in A, B, respectively, in order to make sure that z ¢
®ASL N YBSL  whenever possible.

For every A € D(o, s + 1), if there exist finite subsets ¢, 8 such that
z € s + 1] N WP s + 1]

and
aﬂU{V(u,s+1)| vCo&veTV} =0,

,BOU{V(V,5+1)| VQU&VETNB}z(D,
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then optimally choose some such finite sets (0, A, s + 1), 8{g, A\, s + 1).
If no such finite sets exist, then let (o, A, s +1) = (0, A, s + 1) = 0. Let

afot,s+1) = U a(o, A, s+1) and
AED(a,5+1)

Blet,s+1)= |J Blors+1);
AED(,5+1)

we will enumerate the elements of a(ot,s + 1) in A**! and the elements
of B(ot,s+ 1) into B+1.

Initialization. If a(ot,s+1) # a(o™,s) or otherwise B{ot,s+1) # B{ot, s),
then initialize all 7 such that ot < 7, by letting
o Tstl = and AST =@
e ¢(1,2,5+ 1) =1, all z.
In this case move directly to stage s + 2.
Otherwise, go and define §;4; [n+2,ifn+2 <s+ 1.
5.2.3 o is an N4-node. Assume that R(c) = N2, where

N,f: A=<I>f=>f:Agh

For simplicity, we will omit the subscripts k¥ and o, thus writing ® for ®, and
A for A,.

In order to measure the length of agreement between K and AL, we now
introduce the following length of agreement function.

Definition 5.4: Let
L(o,s + 1) =least{(z,t)| z < s&
(t=0&zc K &z ¢ AL[s+ 1]V
Vut<u<s+1=|zeAlju&z¢ KB ).

If no such (z,t) exists, then let £(0,s +1) =s+1.

Remark 5.5: We notice that if {s| o C §;} is infinite and there exist infinitely
many stages s + 1 such that £(o,s + 1) = (z,t), then either z € K — A” or
z € AL — K. Indeed, it is clear that either z € K or z € AL. If for instance

z € K, then, under the assumptions, we have that there exist infinitely many
stages v such that = ¢ AZX[v]: a similar argument works if x € AL,

Let ot = 07¢(0,s + 1).
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Definition 5.6: We say that s + 1 is c-expansionary if
—>s+1
e K" &c(o,z,s) =1

where, say, £(o,s + 1) = (z,t).
We distinguish the following two cases. Let £(o,s +1) = ¢£:
(a) s+ 1 is o-expansionary.

In this case, define c(o, 2,5+ 1) to be a new c € £,.

(b) If s + 1 is not o-expansionary, then let c(o,2,s + 1) =%, for every z such
that £ < z. Define

Vio,s+ 1) ={c(0,2,9)| [z < L&z ¢ 75+1] Vz>{}
—Jelp,s + 1) p 20}
Finally, let
alot,s+1)={c(o,z,5+1)| 2 <& z€ K"}
and
Clot,s+1)={z]2<l&z#z& 2 B ).

For every z € C(o*,s + 1) optimally choose (see Definition 5.2) a finite set
A(o, 2,5+ 1) such that

(z,M0,2,s +1)) € AT & Mo, z,8+1)C Lls+1]

and let
Mot,s+1) = U Mo, z,s+1).
z€C(ot,5+1)

Ifz € B and (0,2, s + 1) € ®L[s + 1] then optimally choose a finite set )
such that

(c(o,@,s+1),A) € BT &AC L[s + 1]

and let (z,\) € As+l,

Initialization. Ifa(ot,s+1) # a(o¥,s), then initialize all 7 such that o+ < 7.
Otherwise, go and define §,11[n+2,ifn+2<s+1.
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5.2.4 o is an (N4 P)-node. Assume that R(0) = (N, P): let v = o(0), let 7 C v
be such that R(w) = P, and let £ be the outcome of v along o; finally assume
that (omitting obvious subscripts)

N A=QF = K =AL,

and
P Z =049l — yBeL o 7 L
Let also
‘7;3’1 = U V(ﬁ’ s+ 1) and ‘785-1 = U V(’;a s+ 1)
DCuv,peT™ PCu,peT™

In order to define E(o,s), we need to introduce an auxiliary parameter
H(o,s+1) ordered by the (strict) linear order < (assume that H(7,0) =<%= 0,
for every 7). The definitions of E(r,t) and H(r,t) are similar to the definitions
of D(r,t) and G(r,t), respectively, given for the I'nodes.

We first update H(o,s). If there exists ¢ € H(o,s) such that z ¢ T'F[s + 1],
then let & be the < -least such number and let

E(o,s+1) ={y € H(o,5)| y <; £};

if no such z exists, then let E(o,s + 1) = H(o, ).
Let now

H(o,s+1) = E(o,s+ 1) U{y| @N)[{y,\) e T*

&NC Lis+ 1] &y € 8@ VN5 4 1] — plo-(VAVEMSA[5 4 1)},
Given any y € H{g,s + 1), let

e(o,y,s+1) =min{t < s+ 1| (Vu)t <u < s+ 1=y e L]}
Finally, for every y,y’ € H(o,s+ 1), let y <5*! ¢/ if and only if
e(o,y,s+1) <e(o,y,s+1) or [e(o,y,s+1)=¢e(o,y,s+1)&y<y].
Let h(o, s + 1) be the canonical index of E(a, s + 1). Define
ot =0"h(o,s+1).

Since E(a,s + 1) C I'Y[s + 1], for every y € E(o,s + 1) optimally choose (see
Definition 5.2) a finite set A(c,y, s + 1) such that

(¥, Mo,y,s+1))eTl® & Xo,y,5+1)C L[s+1],
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and a finite set 8(c,y, s + 1) such that 8(s,y,5+1)N VB, =0 and

y € PB(oy,s+1)®XM0,y,5+1)

(if no such finite set exists then simply let 3(o,y, s + 1) = 0). Let
Bet,s+1)= | Bloys+1).
yEE(o,541)

Finally, let

Mot,s+1) = |J  Moys+1).
yEE(o,5+1)

Initialization. If 8(c*,s+1) # B(c*,s), then initialize all 7 such that o+ < 7.
Otherwise, go and define ds41 [n+2,if n+2 < s+ 1.

5.2.5 0 isanNP-node. Assume that R(c) = AB. This case is similar to the case
of an N*4-node, but interchanging A with B, while considering the requirement
NE: B=3%f=K=A~L

5.2.6 o is an (N® P)-node. This case is similar to the case of an (N4, P)-node,
but interchanging A with B and ® with ¥, while considering the requirements
(assuming R{c) = (NE,P))

NE: B=9®f=K=AL

and
Pi: Z; =00l =Bl o 7, - TL
Notice also that in this case we define finite sets a(o,y,s + 1) (instead of
Blo,y,s+ 1)) and a{o*,s + 1) (instead of B(ct, s + 1)).
5.2.7 Final updating. At the end of stage s + 1 let
At =AU alns+1)) - ) Vins+1)
TCo 'r(_:o’,‘reTNA

and
B =(Blslu | B(rs+1))— |J Virs+1).
7Co TQU,TETNE
For every o C 8,41, let

rsti I's U {(z,A)| {z,A) enumerated into I'*+1},

AT = A3 U{(z, )] (2, ) enumerated into Az+1}.
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6. The verification

We first show
LEMMA 6.1: For every n,
(1) 0, = liminf, é; | n exists.
(2) oy, is eventually never initialized.

(3) limg &(0n, $), lims B(0n, $), and limg A(o,, ) exist and are finite; moreover,
writing M(oy,) = limg A(o,, s), we have that A(o,) C L.

(4) If T C o, is al-node, with R(7) = (P, z), and 7 C 7 is such that R(7) = P,
and k is the outcome at T along ¢, then

Dy ={\ (z,\) eTL & X C L]},
and for almost all s, if Tk’ C &, then Dy, C Dyr.

(5) If T C o, is an (N,P)-node, with R(t) = (N, P), and = C 7 is such that
R(w) =P, and h is the outcome at T along o, then

Dy, = {z] 3s)[x € H(r,s) & z € TX]},

and for almost all s, if T"h' C &, then Dy C Dy,

Proof: The proof is by induction on n. For n = 0 the claim is trivial, being
gy = @
Suppose now that the claim is true of n. Let o, = liminf; é; [n, and for every
T < oy let a(7) = lim; a7, s), B(7) = lim, B(7, s), A(7) = lim, A(T, 5).
Moreover,

Definition 6.2: Let t,, be the least stage such that, for every s > {,,,
o for all 7 < oy, T € &s;
e 0, is not initialized at s;

o forall 7 <o,
a(t,s) = a(r) B(r,5)=B(r) AT,s)=A7);

e for every I'-node T C 0y, if k is the outcome at 7 along o, then for every
K,
7°k' C 8, = Dy C Dy
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e for every (N,P)-node 7 C a,, if h is the outcome at 7 along oy, then for
every b/,
T"h' Céy = Dy C Dp.

We distinguish the following cases, according as o, is a P-node, a I'-node, an
N-node, or an (N, P)-node.

CASE 1: 0y, is a node. Then obviously 0,41 = liminf; d; [n+1 = 0,70. The
other conditions are trivially checked.

CASE 2: o0, is a ['-node. Assume that R(c,} = (P;,z), and let # C o, be such
that R(7) = P;. In order to prove (4), let D = {)| (z,\) € I'x & A C L}. Then

CraiM: The set D is finite, and op41 = 0, u, where v is the canonical index of
D.

To prove the claim, first notice that D contains only finite sets A, such that we
enumerate an axiom (z,A) € I'S| while acting, at some stage s, at some I'-node
' O 7, with R(x') = (P, z).

Consider only axioms of this form enumerated at stages s > ¢,,,.

SUBLEMMA 1: Ifo, < ' then A€ L.

Proof: 1If 0, <y 7', then there exists some longest T such that # C 7 C o,
and the outcome o at 7 along # is such that o, <r 770. We have the following
possibilities:

(a) T is a I-node, where, say, R(7) = (R(n"),y). Let k be the outcome at 7
along o,; then there exists k' such that k < k¥’ and 77k’ C #’. Then by
induction

Dy = {\ (z,\) € T & X C L}

Suppose that s > t, is a stage such that 77k" C §,. Then by induction,
there exist a finite set A € Dy — Dy, and, thus, A ¢ L. On the other hand,
if (z, A) € T'; is an axiom we define at s, while acting at 7', then we have
that A D A. Hence A ¢ L.

(b) T is an N-node; assume for definiteness that 7 is an N*-node: similar
arguments apply for NB-nodes. Let £ = (y, u) be the outcome at 7 along
0,. Thus there exists £’ such that £ < ¢/ and 7¢' C ' C §,. By definition
of t,, and since we are assuming to take action at a stage s > t,_, we
conclude that ¢ is not finitary, i.e. y ¢ AL, but, at stage s, we have that
y € AL[s], and y € C(77¢, s); thus if (z,)) € I’ is the axiom we define



52 A. NIES AND A. SORBI Isr. J. Math.

at s at 7', then we have that A(1,y,s) C A. Since A(7,y,s) € L, we have
that A & L.

(c) 7 is an (N,P)-node; assume for definiteness that 7 is an (N4,P)-node:
similar arguments apply for (N?,P)-nodes. Let h be the outcome of 7
along o, and let s > t,_ be such that n’ C §,. Thus there exists h’, with
h < k' such that 77h' C 7' C §,. It follows by induction that

Dy = {al (3t)[z € H(r,t) &z € T4},

where R(7) = (R(V'), R(m")), for some N-node v/ and P-node =”. Since
liminf, ds | |7)+1 = 77h, it follows by induction that there must exist
z € Dy and a finite set A(7,z, s) such that z ¢ T'L, and z € F,);S,T’x’s) and
A(t,z,8) C L[s]. The construction ensures that if (z, \) € T'% is the axiom
we define at s at 7', then A(r,z,s) C A but A(r,z,s) € L, therefore

AL L. |

We have thus shown that the set D, where
D={\{z,)) el &\ L}},

is finite, since this set can contain only finite sets A such that an axiom (z, A) € I'x
has been enumerated only while acting at o,,, or at some stage s < t,_: on the
other hand we either define at some stage s > t,, at o, some axiom (z,\) €
'y with A C L, in which case we eventually stop appointing axioms at o,; or
otherwise D = 0.

It is now easy to see that 0,1 = 0, u where u is the canonical index of D,
and that there exists a stage ¢ such that, for every s > ¢, if 0,”u C & then
DC D,.

Finally, we show (3) for 0,41. Given any X\ € D, since we always appoint new
coding markers to enter V(v s), for v C o, either at some stage s > ¢, we find
some finite sets « and 3 such that z € ®*®A[s + 1] N YA [s + 1] and

aﬂU{V(u,s—!—l)lVQU&I/ETNA}z(D,
ﬂﬁU{V(V,S-{-l)II/QU&UETNB}ZQ,

and, in this case, a{g,, A) = lim, a{o,, A, s) equals some such @, and B{o,, A) =
lim, B(0pn+1, A, ) equals some such g; or for every s > t,_,

a(on, A, 8) = B(on, A, s) = 0.
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In any case lim; a(0pq1,5) and lims S(0n41,8) exist. Hence, ony1 eventually
does not initialize any string 7, with 0,1 < 7.

CASE 3: o, is an N4-node. Assume that R(c,) = Ni. Let

A, = | A,
§>to,
Since K £, L, and, thus, K # A{;", it follows from the observations in Remark
5.5, that ¢ = liminf, (o, s) is finite. Thus oy41 = 7, ¢.
Clearly lim; C(o,41,8) = C(0,41) exists and is finite, being

C(ons1) ={2|2< L& z € K}.

On the other hand, it is easy to see that lim, ¢(oyn,2,8) = c(o,, 2) exists for
all z € C(op41), hence lims a(ont1,s) = {c(on, 2)| 2 € C(ont1)}. Thus ony1
eventually stops initializing lower priority strings 7.

Moreover, for every x € C(o,41), we are eventually able to appoint some
(optimally chosen) finite set A(o,,, ) such that A(o,,z) = lims A(op, z, s), with
z € AY"®) and A(on,z) C L. Therefore A(oni1) = lim, Mop, s) exists and is
finite, being A(on+1) = Usec(on 1) A(0n, 7). We have also shown that M(ony1) C
L.

CASE 4: o0, is an (N4, P)-node. Assume that R(0y,) = (N, P); let 7 C 7, be
such that R(w) = P, and let v = o(0,).
We first show

SUBLEMMA 2: liminf, h(0y, s) is finite. In fact liminf h(o,,s) = h, where
Dy = {z| (3s)[z € H(on,s) &z € TL]}.
Proof: In order to show that (5) is true, we first observe:

CraM: The set E, where
E = {z| (3s)[z € H(on,s) &z € TL)},
is finite.

Indeed, clearly E contains only numbers x, such that we enumerate an axiom
(z,A) € I';, while acting, at some stage s, at some I-node 7’ 2 7, with R(n’) =
(P, z).

Consider now all I'-node 7’ 2 7, with R(n') = (P,z), for which we define
axioms (z,A) € I only at stages s > t,_.

We distinguish the following two subcases.
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SUBCASE 1: o0, <z 7. We argue in this case as in the proof of Sublemma 1
that, for every axiom (z,A) € 'y which we have enumerated at a stage s > ¢,,
at 7', we have A € L.

SUBCASE 2: o, C 7. Given any stage t, let us say that © € H(o,,t) because
of ', if there is an axiom (z,A) € T, appointed at 7', at some stage s < ¢, such
that, letting
VA= U v,

oCu,peT™
we have that A C L[t} and z € q)srw_VA)@A[t] - @&w—(VAUV(V))G))‘[t].

We claim that there is no t such that z € H(o,,t), because of n': assume
for a contradiction otherwise, and let ¢ be such a stage. Since we consider only
axioms appointed at 7’ only at stages s > ¢, , we may assume that ¢t > t,,.
Thus, there must exist an axiom (x,A) € I',, appointed at some stage s such
that t,, < s <t, while acting at 7’; hence z € ®2%L[s], and thus there exists a
finite set a such that = € ®2®* and a ® A C A® L[s]. Since o, = liminf, §, | n,
and by our choice of t,_, it easily follows that

VAUVt Na=19

since at stages © > s only new numbers (thus numbers not in @) can be appointed
as new v'-coding markers (with v/ C v and v/ € TNA) and possibly enter V;4, or
V(v,t). Since this holds of every possible axiom appointed at 7’ at any s such
that t,, < s <t, we have a contradiction. We therefore conclude that the case
z € H(o,,t) because of ' does not hold. Hence, no n’ 2 o, can contribute
elements into H(o,,t) for any t > ¢,,.

We have thus shown that the set F, where
E = {z| (3s)[z € H(on,s) & = € TL]},
is finite, since this set can contain only numbers z such that either
e axioms (z,A) € 'S are appointed at stages s < t,, , or

¢ axioms (z,A) € I'® are appointed at I-nodes ' (with R(x') = (P, z))
such that = C n’ C o, but only for finitely many numbers z does an
axiom (z,\) € I'; get appointed at any of these nodes.

Let now A be the canonical index of E. We are now in a position to show that

Ont1 =liminfé; n+1=0,"h.
s
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Clearly there exists a stage sy > t,, such that D C Dy, ), for every s > s,
and

(Vs > s0)(Vy € Dn)(Vz € H(o,s) — Dp)ly =<5, 7]

and <,,= lim, <3 exists on Dy, where, for any y,y’ € Dy, we have y <, ¢ if

and only if, for some #g,t1 with ty < ¢4,
(Vs > to)ly € TE[s)| &y ¢ TE[t].

To show that there are infinitely many stages s such that h(o,,s) = h, we
show that for every t > sy there exists s > ¢ such that h(o,,s) = h. To this end,
let t > s9. Suppose that s’ > t is such that ¢, C d,: then Dy C Dy(qs,,s)- Let
us assume that z € Dy, o) — Dp, and z is the <f,ln-lea.st such element; clearly
x ¢ T, and, for every y € Dy, ¥ -<f,," z. It follows that at the least stage s > s’
such that o, C ds; and z ¢ T'L[s], we define E(0y,s) = Dp, hence h(a,,s) = h.
1

It follows that we eventually appoint some optimally chosen finite sets
B(on, y) = lim B(on,y,8),  AMom,y) =limA(on,y,s)

for every y € Dy, such that y € WA~ ¥®An) and Ao,,y) C L, and
thus the set B(0,41) = lim, 3(0,41,8) exists and is finite, being Blopnt1) =
Uyep,, B(0n,y). Finally we observe that lims M(0nt1,5) = A(0n41), where

/\(0n+1) = U /\(0n7y)>
y€Dn
and A(op41) € L. Thus (3) is true of o,41.

It then also follows that 0,1 eventually stops initializing lower priority strings
T.

CASE 5: o0, is an NP-node. The verification is similar to Case 3, but
interchanging A with B.

CASE 6: o, is an (N P)-node. The verification is similar to Case 4, but

interchanging A with B, and ® with . |

Definition 6.3: By Lemma 6.1, let f be the infinite path through T such that,
for every n, f[n = g,. The path f is called the true path.
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LeMMA 6.4: For every k, the requirements N, ,f and N, ;f are satisfied.

Proof: Assume that n is such that R(f [n) = N,f (a similar argument applies
if f{n is an NP-node). Then by Lemma 6.1, Case 3, liminf, £(f [n, s) exists.
The claim easily follows from the following sublemma.

SUBLEMMA 3: If A = ®F then K = AL (where A, is defined as in Case 3 of
the proof of Lemma 6.1).

Proof: Let

X = {c| (32)(3s > t,,)[c = c(on, 2,5)}.
We in fact show that A(c) # ®£(c) for some ¢ € X. Assume the contrary. Let
limg #(on, s) = (z,u), thus K(z) # A, ().

Assume first that ¢ € K. By definition of the length of agreement function
and by construction, we have that ¢ = lim, ¢(oy, z, s) exists, and ¢ € A. Since
we are assuming that A(c) = ®F(c), we are eventually able to appoint an axiom
(z,\) € Ay, with c € @} and A C L, thus giving z € AL, contradiction.

Assume now that « ¢ K. Then for every s > i,,, it follows by construction
that c(o,,z,s) ¢ A. Since

(YN[, \) € Ay, = (35 > 5, )[(c(On, 2, 8), A) € i),
it follows that z ¢ AL . [
LEMMA 6.5: For every i the requirement P; is satisfied.

Proof: Given i, we want to show that
Z; = oL = ¢BOL o 7, —~ L

where I' = I, is the e-operator that we construct at nodes 7 2 o, with o C f
such that R(c) = P.

For simplicity, throughout the following proof, we will omit the subscript :.
Let z be given. Let 7 C f be the I'-node, such that R(r) = (P,z), and, by
Definition 6.2 and Lemma 6.1, let ¢, be a stage such that for every s > t.,

o forall 7/ <y 7, 7" € &s;
o for all p C 7, Mp,s) = Ap,t;)(= Mp)) and AMp) € L;

e for every node v C 7, if v~ is a N4-node then a(v,s) = a(y,t,), or
B(v,s) = B(v,t,) if v~ is a NB-node.
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First assume that z € ®4®L N UBOL  Then there exists a stage t such that,
for every s > t, z € ®A®L[s] N UBSL[5]. Since {s| 7 C 4} is infinite, we can
eventually find a stage ty > t, such that at ¢, we appoint finite sets a, 3, A4, A\
such that

adMCApL peICBolL,

and z € @9 N POSX anqd. for every s > to,

an U V(v,s)=0 and BN U Viv,s) =0,

ygf‘yeTNA vQT,yETNn

and we appoint an axiom
(@M UNPU|J{Mp) pC 7)) €T

Therefore z € T'Y, since by Lemma 6.1 A(p) C L, for every p C 7.

Assume now that Z = ®4®L = ¢BSL 31 let, for a contradiction, z € T'F — Z.
Assume further that axioms of the form (z, A} € T" are only enumerated at stages
s > ty, where t, is as given in Definition 6.2.

Suppose that sq > t, is the least stage such that we appoint at some 7' D ¢
finite sets a = a(n’, 80), 8 = B(n’, 50), A (7', 50), AB(7', 50) and we enumerate an
axiom (z, ) € T with M (', s0) UAB(n',s9) C A C L.

Then there must be some N-nodes v C f, such that our extracting activity
on behalf of the N-requirements located at those N-nodes prevents us from
reinstating x € @29 0 WE®* while acting at 7 (where 7 C f is the T-node,
such that R(7) = (P, z)), via enumeration or re—enumeration of suitable finite
sets in A or B.

Let v be the least N-node (assume for definiteness that v is an N4-node: similar

arguments apply if v is an N®-node) such that ¢ C v C 7 and

e @w-VhHex _ (D(w——(VAUV(u)))@/\’

where
VA = {y] @%s)(3 Cvp e TV &y e V(D,s)]}
and

V(v) ={yl 37s)ly € V(,9)]}-

Let p C f be the (N,P)-node immediately following v on the true path, with
R(p) = (R(v),P). It follows from Lemma 6.1(5) that x € Dy, where h is the
outcome at p along f. By minimality, there is no N®-node v such that 0 C v' C v
and the extracting activity demanded by R(') interferes with restraining some
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finite set 8 C B to get z € YB®X. Therefore, we can eventually restrain a finite
set B(m,z) = lim, B(7,z,s) C B such that z € WAm2)OX,

This shows that z € UB®L _ AL contradicting the hypothesis that 4L =
yBoL,

This concludes the proof of the theorem. B

7. Lattice embeddings

[Lac72] shows that the nondistributive lattice M3 (see Figure 1) can be embedded
into the low c.e. Turing degrees. By [MC85], it follows that every lattice which
is known to be embeddable into the low c.e. Turing degrees (and thus M3 as
well} can be embedded into &: since, under such an embedding, the e-degree
corresponding to the top element is incomplete and, thus, branching by Theorem
1.3, there follows*:

THEOREM T7.1: The lattice Sg of Figure 1 can be embedded into .

Proof: Trivial.

Since Sg is not embeddable into the c.e. Turing degrees (see [LS80]), it follows
that the class of finite lattices that are embeddable into & properly extends the
class of finite lattices that are known to be embeddable into the c.e. Turing
degrees.

Ms Sg

Figure 1.

* We thank R. Shore for pointing out to us this consequence of Theorem 1.3.
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